

SAND REPORT
SAND2003-1378
Unlimited Release
Printed September 2003

TSFCore 1.0

A Package of Light-Weight
Object-Oriented Abstractions for the
Development of Abstract Numerical
Algorithms and Interfacing to Linear
Algebra Libraries and Applications.

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Michael A. Heroux
Computational Math/Algorithms

Kevin R. Long
Computational Sciences & Math

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2003-1378
Unlimited Release

Printed September 2003

TSFCore 1.0
A Package of Light-Weight Object-Oriented Abstractions

for the Development of Abstract Numerical Algorithms
and Interfacing to Linear Algebra Libraries and

Applications.

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Michael A. Heroux
Computational Math/Algorithms

Kevin R. Long
Computational Sciences & Math

Sandia National Laboratories
�

, Albuquerque NM 87185 USA,

Abstract

Engineering and scientific applications are becoming increasingly modular, utilizing pub-
licly defined interfaces to integrate third party tools and libraries for services such as mesh
generation, data partitioning, equation solvers and optimization. As a result, it is important
to understand and model the interaction between these various modules, and to develop good
abstract interfaces between the primary modules. One category of modules that is becoming
increasingly important is abstract numerical algorithms (ANAs). ANAs such as linear and non-
linear equation solvers, methods for stability and bifurcation analysis, uncertainty quantification
methods and nonlinear programming solvers for optimization are typically mathematically so-
phisticated but have surprisingly little essential dependence on the details of what computer

�

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

4

system is being used or how matrices and vectors are stored and computed. As a result, using
abstract interface capabilities in languages such as C++, we can implement ANA software such
that it will work, unchanged, with a variety of applications and linear algebra libraries.

In this paper we present a package of minimal but complete (with respect to basic required
functionality and performance) object-oriented interfaces (implemented in C++) called TSF-
Core, which allows the development many of these ANAs and simplifies the development of
interfaces to applications and linear algebra libraries.

5

Acknowledgement

The authors would like to thank Paul Boggs, Rob Hoekstra, Rich Lehoucq, and Bart van Bloemen
Waanders for their input and suggestions.

The format of this report is based on information found in [32].

6

Contents

1 Introduction . 9
2 Classification of linear algebra interfaces . 10
3 TSFCore: Basic Requirements . 12
4 TSFCore: Overview . 13
5 TSFCore: Details and Examples . 15

5.1 A motivating example sub-ANA : Compact limited-memory BFGS 15
5.2 VectorSpace . 16

5.2.1 General compatibility of Vector objects . 18
5.3 Vector . 18

5.3.1 Vector::applyOp(...) . 20
5.3.2 Explicit access to Vector elements . 23
5.3.3 Serial vectors and vector spaces . 26

5.4 LinearOp . 27
5.4.1 LinearOp::apply(...) . 27
5.4.2 Optional support for adjoints . 29

5.5 MultiVector . 30
5.5.1 Accessing columns of MultiVector as Vector objects 30
5.5.2 MultiVector sub-views . 31
5.5.3 MultiVector support for applyOp(...) . 32
5.5.4 Vector and MultiVector correspondence . 33
5.5.5 MultiVector acting as a LinearOp . 35
5.5.6 Aliasing of Vector and MultiVector arguments 37

6 An Example Abstract Numerical Algorithm : An Iterative Linear Solver 38
7 General Object-Oriented Software Design Concepts and Principles . 42
8 Nonessential but Convenient Functionality Missing in TSFCore. 45

8.1 Sub-vector views as Vector objects . 45
8.2 Composition of Vector and LinearOp objects . 46
8.3 Matlab-like notation and handle classes for linear algebra using operator overloading 47

9 Making the most of TSFCore : Adapters . 48
10 Summary . 48
References . 51

Appendix

A TSFCore C++ class declarations . 53

Figures

1 UML [12] class diagram : Interfaces between abstract numerical algorithm (ANA),
linear algebra library (LAL), and application (APP) software. 12

7

2 UML class diagram : Major components of the TSF interface to linear algebra 14
3 A compact limited-memory representation of the inverse of a BFGS matrix. 17
4 Some standard vector operations declared in the header file TSFCoreVectorStd-

OpsDecl.hpp and defined in the TSFCoreVectorStdOps.hpp header file. 19
5 A single-vector version of the preconditioned bi-conjugate gradient method (BiCG). 40
6 Implementation of an iteration of a multi-vector version of BiCG. 41

8

TSFCore 1.0
A Package of Light-Weight

Object-Oriented Abstractions for the
Development of Abstract Numerical

Algorithms and Interfacing to Linear
Algebra Libraries and Applications.

1 Introduction

One area of steady improvement in large-scale engineering and scientific applications is the in-
creased modularity of application design and development. Specification of publicly-defined inter-
faces, combined with the use of third-party software to satisfy critical technology needs in areas
such as mesh generation, data partitioning and solution methods have been generally positive devel-
opments in application design. While the use of third party software introduces dependencies from
the application developer’s perspective, it also gives the application access to the latest technology
in these areas, amortizes library and tool development across multiple applications and, if properly
designed, gives the application easy access to more than one option for each critical technology
area, e.g., access to multiple linear solver packages.

One category of modules that is becoming increasingly important is abstract numerical algo-
rithms (ANAs). ANAs such as linear and nonlinear equation solvers, methods for stability and
bifurcation analysis, uncertainty quantification methods and nonlinear programming solvers for op-
timization are typically mathematically sophisticated but have surprisingly little essential depen-
dence on the details of what computer system is being used or how matrices and vectors are stored
and computed. Thus, by using abstract interface capabilities in languages such as C++, we can im-
plement ANA software such that it will work, unchanged, with a variety of applications and linear
algebra libraries. Such an approach is often referred to as generic programming [1].

In this paper we propose the use of a new stripped down and enhanced version of the Trilinos
Solver Framework (TSF) called TSFCore as the common interface for (i) ANA development, (ii)
the integration of an ANA into an application (APP) and (iii) providing services to the ANA from
a linear algebra library (LAL). By agreeing on a simple minimal common interface layer such as
TSFCore, we eliminate the many-to-many dependency problem of ANA/APP interfaces. The goal
of TSFCore is not to replace the use of other types of more established linear algebra interfaces such
as TSF [33], AbstractLinAlgPack (the linear algebra interfaces in MOOCHO [7]), or HCL [23] as
the interfaces that are directly used in the development of ANAs. Instead, TSFCore is designed to
make it easier for developers to provide the basic functionality from APPs and LALs required by

9

these existing ANA-specific interfaces.

While TSFCore provides a mechanism to express all of the functionality required to be di-
rectly used in ANA development it does not attempt to provide a full collection of methods that
directly support the anticipated functionality needs of ANAs. Instead TSFCore relies on a simple
but powerful reduction and transformation operator mechanism [9] that can be used to express any
element-wise vector reduction or transformation operation. More direct and convenient access to
functionality that might be desired by a given ANA is provided by interfaces such as TSF and Ab-
stractLinAlgPack. This extended functionality can be very helpful in developing ANA code. Section
8 discusses this topic in detail.

It is difficult to describe a set of linear algebra interfaces outside of the context of some class of
numerical problems. For this purpose, we will consider numerical algorithms where it is possible
to implement all of the required operations exclusively through well defined interfaces to vectors,
vector spaces and linear operators. Here we consider only the type of functionality such as is
required in the numerical solution of optimal control problems as described in [25].

We assume that the reader has a basic understanding of vector reduction/transformation opera-
tors (RTOp) (see [9]), is comfortable with object-orientation [22] and C++, and knows how to read
basic Unified Modeling Language (UML) [21] class diagrams. We also assume that the reader has
some background in large-scale numerics and will therefore be able to appreciate the challenges
that are addressed by TSFCore.

To motivate TSFCore, we discuss the context for TSFCore in large-scale (both in lines of code
and in problem dimensionality) numerical software in Section 2. The major requirements for TS-
FCore are spelled out in Section 3. This is followed by an overview of the TSFCore linear algebra
interfaces in Section 4 and a detailed discussion of the design of the TSFCore linear algebra in-
terfaces in Section 5 including numerous examples. A complete example ANA for the iterative
solution of simultaneous systems of linear equations (using a simple BiCG method) is described in
Section 6. A discussion of some of the object-oriented and other general software design concepts
and principles that have gone into the development of TSFCore is deferred to Section 7. Some of
the nonessential but convenient functionality that is useful to direct ANA developers that is missing
in TSFCore is described in Section 8. Finally, a few comments about making the most of TSFCore
by developing adapters is described in Section 9.

2 Classification of linear algebra interfaces

Although we will discuss APPs, ANAs and LALs in detail later in this section, we want to briefly
introduce these terms here to make them clear. Also, although there are certainly other types of
modules in a large-scale application, we only focus on these three.

� Application (APP): The modules of an application that are not ANA or LAL modules. Typ-

10

ically this includes the code that is unique to the application itself such as the code that for-
mulates and generates the discrete problem. In general it would also include other third-party
software that is not an ANA or LAL module.

� Abstract Numerical Algorithm (ANA): Software that drives a solution process, e.g., an it-
erative linear or nonlinear solver. This type of package provides solutions to and requires
services from the APP, and utilizes services from one or more LALs. It can usually be written
so that it does not depend on the details of the computer platform, or the details of how the
APP and LALs are implemented, so that an ANA can be used across many APPs and with
many LALs.

� Linear Algebra Library (LAL): Software that provides the ability to construct concrete linear
algebra objects such as matrices and vectors. A LAL can also be a specific linear solver or
preconditioner.

An important focus of this paper is to clearly identify the interfaces between APPs, ANAs and
LALs for the purposes of defining the TSFCore interface.

The requirements for the linear algebra objects as imposed by an ANA are very different from
the requirements imposed by an application code. In order to differentiate the various types of
interfaces and the requirements associated with each, consider Figure 1. This figure shows the three
major categories of software modules that make up a complete numerical application. The first
category is application (APP) software in which the underlying data is defined for the problem.
This could be something as simple as the right-hand-side and matrix coefficients of a single linear
system or as complex as a finite-element method for a 3-D nonlinear PDE-constrained optimization
problem. The second category is linear algebra library (LAL) software that implements basic linear
algebra operations [18, 2, 11, 29, 3, 27]. These types of software include primarily matrix-vector
multiplication, the creation of a preconditioner (e.g. ILU), and may even include several different
types of linear solvers. The third category is ANA software that drives the main solution process
and includes such algorithms as iterative methods for linear and nonlinear systems; explicit and
implicit methods for ODEs and DAEs; and nonlinear programming (NLP) solvers [38]. There are
many example software packages [3, 29, 27, 15, 10] that contain ANA software.

The types of ANAs described here only require operations like matrix-vector multiplication,
linear solves and certain types of vector reduction and transformation operations. All of these
operations can be performed with only a very abstract view of vectors, vector spaces and linear
operators.

An application code, however, has the responsibility of populating vector and matrix objects
and requires the passing of explicit function and gradient value entries, sometimes in a distributed
parallel environment. This is the purpose of a APP/LAL interface. This involves a very different set
of requirements than those described above for the ANA/APP and ANA/LAL interfaces. Examples
of APP/LAL interfaces include the FEI [16] and much of the current TSF.

11

APP In ter fac e

APP

Vec
Mat

ANA

Kr y lo v Solv er

Vec

Pr ec on d i t io n er

LAL 1 LAL 2

1..*

1 111

1..*

1

1..*1..*1

ANA/LAL interface
No t Par al l el A w are!

1

Interfaces within a
single LAL (e.g.
PETSc, Petra, Aztec,
ISIS++ etc.)
Par al l el Aw are!

ANA/APP interface
No t Par al l el A w are!

APP/LAL interface
(e.g. Finite Element
Interface, FEI)
Par al l el Aw are!

1

Specialization
 / inheri tance

�
 Computes functions

BaseClass

Der ived Clas s

Multiplicity

Interface
/ abstract class

Implementation
/ subclass

text

Clas s2

Clas s3

1..*
Association

Interface
(abbreviated)

Note

UML No tat io n

Vector
Interface

LAL/LAL interfaces (e.g. Equation Solver Interface, ESI)
Par al l el Aw are!

Figure 1. UML [12] class diagram : Interfaces between abstract nu-

merical algorithm (ANA), linear algebra library (LAL), and application

(APP) software.

Figure 1 also shows a set of LAL/LAL interfaces that allows linear algebra objects from one
LAL to collaborate with the objects from another LAL. Theses interfaces are very similar to the
APP/LAL interfaces and the requirements for this type of interface is also not addressed by TSF-
Core. The ESI [31] and much of the current TSF contain examples of LAL/LAL interfaces.

TSFCore, as described in this paper, specifies only the ANA/LAL interface. TSFCore-based
ANA/APP interfaces are described elsewhere (e.g. [8]).

3 TSFCore: Basic Requirements

Before describing the C++ interfaces for TSFCore, some basic requirements are stated.

1. TSFCore interfaces should be portable to all the ASCI [39] platforms where SIERRA [19]
and other ASCI applications might run. However, a platform where C++ templates are fun-
damentally broken will not be a supported platform for TSFCore.

2. TSFCore interfaces should provide for stable and accurate numerical computations at a fun-
damental level.

12

3. TSFCore should provide a minimal, but complete, interface that addresses all the basic effi-
ciency needs (in both speed and storage) which will result in near-optimal implementations
of all of the linear algebra objects and all of the above mentioned ANA algorithms that use
these objects. All other types of nonessential but convenient functionality (e.g. Matlab-like
syntax using operator overloading, see Section 8.3) will not be addressed by TSFCore. This
extra functionality can be built on top the basic TSFCore abstractions (e.g. using TSF).

4. ANAs developed with TSFCore should be able to transparently utilize different types of com-
puting environments such as SPMD1, client/server2 and out-of-core3 implementations. A
hand-coded program (e.g. using Fortran and MPI) should not provide any significant gains in
performance in any of the above categories in any computing environment. This is critical for
the use of TSFCore in scientific computing.

5. The work required to implement adapter subclasses (see the “Adapter” pattern in [22]) for
and with TSFCore should be minimal and straightforward for all of the existing related linear
algebra and ANA interfaces (e.g. the linear algebra interfaces in MOOCHO [7] and NOX
[30], see Section 9). This requirement is facilitated by the fact that the TSFCore interfaces
are minimal.

4 TSFCore: Overview

The basic linear algebra abstractions that make up TSFCore are shown in Figure 2. Complete C++
class declarations for these interfaces are given in Appendix A. The key abstractions include vectors,
vector spaces and linear operators. All of the interfaces are templated on the Scalar type (the UML
notation for templated classes is not used in the figure for the sake of improving readability). A
vector space is the foundation for all other linear algebra abstractions. Vector spaces are abstracted
through the VectorSpace interface. A VectorSpace object acts primarily as an “abstract
factory” [22] that creates vector objects (which are the products in the “abstract factory” design pat-
tern). Vectors are abstracted through the Vector interface. The Vector interface is very minimal
and really only defines one nontrivial method – applyOp(...). The applyOp(...) method
accepts user-defined (i.e. ANA-defined) reduction/transformation operator (RTOp) objects through
the templated RTOp C++ interface RTOpPack::RTOpT. A set of standard vector operations is
provided as nonmember functions using standard RTOp subclasses (see Section 5.3). The set of
operations is also easily extensible. Every Vector object provides access to its VectorSpace
(that was used to create the Vector object) through the method space() (shown in Figure 2 as
the role name space on the association connecting the Vector and VectorSpace classes). The
VectorSpace interface also provides the ability to create MultiVector objects through the
createMembers(numMembers)method. A MultiVector is a tall thin dense matrix where

1Single Program Multiple Data (SPMD): A single program running in a distributed-memory environment on multiple
parallel processors

2Client/Server: The ANA runs in a process on a client computer and the APP and LAL run in processors on a server
3Out-of-core: The data for the problem is stored on disk and is read from and written to back disk as needed

13

operation(inout arg_name : type) : type

attribute_name : type

Class1

Class4

Class5

*

role_name
0..1

«create»

association

class

operations

multiplicity

navigation

dependency

stereotype

class name

UML Notation

attributes

Class2

generalization
 self association

Class3

composition association

createMember() : Vector

createMembers(in numMembers : int) : MultiVector

isCompatible(in vecSpc : VectorSpace) : bool

scalarProd(in x : Vector, in y : Vector) : Scalar

dim : int

TSFCore::
VectorSpace

applyOp(in op : RTOpT, inout ...)

TSFCore::
Vector

apply_op(inout ...)

reduce_reduct_objs(inout ...)

RTOpPack::
RTOpT

applyOp(in op : RTOpT, inout ...)

subView(in col_rng : Range1D) : MultiVector

subView(in numCols : int, in cols[1..numCols] : int) : MultiVector

TSFCore::
MultiVector

opSupported(in M_trans) : bool

TSFCore::
OpBase

1

columns
1..*

«create»

«create»

domain

space

apply(in M_trans, in x : Vector, out y : Vector, in ...)

apply(in M_trans, in X : MultiVector, out Y : MultiVector, in ...)

TSFCore::
LinearOp

createVecSpc(in dim : int) : VectorSpace

TSFCore::
VectorSpaceFactory

«create»

smallVecSpcFcty

range

Figure 2. UML class diagram : Major components of the TSF interface

to linear algebra

each column in the matrix is a Vector object which is accessible through the col(...) method.
MultiVectors are needed for near-optimal processor cache performance (in serial and parallel
programs) and to minimize the number of global communications in a distributed parallel environ-
ment. The MultiVector interface is useful in many different types ANAs as described later.
VectorSpace also declares a virtual method called scalarProd(x,y) which computes the
scalar product �

x � y � for the vector space. This method has a default implementation based on the
dot product xT y. Subclasses can override the scalarProd(x,y)method for other, more special-
ized, application-specific definitions of the scalar product. There is also a MultiVector version
VectorSpace::scalarProds(...) (not shown in the figure). Finally, VectorSpace also
includes the ability to determine the compatibility of vectors from different vector spaces through
the method isCompatible(vecSpc) (see Section 5.2.1). The concepts behind the design of
the VectorSpace, Vector and MultiVector interfaces are discussed later in Sections 5.2,
5.3 and 5.5 respectively.

Another important type of linear algebra abstraction is a linear operator which is represented
by the interface class LinearOp. The LinearOp interface is used to represent quantities such as
the Jacobian matrix ∂c

∂y . A LinearOp object defines a linear mapping from vectors in one vector
space (called the domain) to vectors in another vector space (called the range). Every LinearOp
object provides access to these vector spaces through the methods domain() and range() (shown
as the role names domain and range on the associations linking the OpBase and VectorSpace

14

classes). The exact form of this mapping, as implemented by the method apply(...), is

y � αop
�
M � x � βy (1)

where M is a LinearOp object; x and y are Vector objects; and α and β are Scalar objects. Note
that the linear operator in (1) is shown as op

�
M � where op

�
M ��� M or MT (depending on the argu-

ment M trans). This implies that both the non-transposed and transposed (i.e. adjoint) linear map-
pings can be performed. However, support for transposed (adjoint) operations by a LinearOp ob-
ject are only optional. If an operation is not supported then the method opSupported(M trans)
will return false (see Section 5.4.2). Note that when op

�
M ��� MT , then x and y must lie in the

range and domain spaces respectively which is the opposite for the case where op
�
M ��� M.

In addition to implementing linear mappings for single Vector objects, the LinearOp in-
terface also provides linear mappings of MultiVector objects through an overloaded method
apply(...) which performs

Y � αop
�
M � X � βY (2)

where X and Y are MultiVector objects. The MultiVector version of the apply(...)
method has a default implementation based on the Vector version. The Vector version apply(-
...) is a pure virtual method and therefore must be overridden by subclasses. The issues asso-
ciated with supporting the MultiVector version verses the Vector version of this method are
described in Section 5.5.4.

Section 5 goes into much more detail behind the design philosophy for the core interfaces and
the use of these interfaces by both clients and subclass developers.

5 TSFCore: Details and Examples

A basic overview of the interface classes shown in Figure 2 was provided in Section 4. In the
following sections, we go into more detail about the design of these interfaces and give examples of
the use of these classes. Note that in all the below code examples it is assumed that the code is in a
source file which include the appropriate header files.

5.1 A motivating example sub-ANA : Compact limited-memory BFGS

To motivate the following discussion and to provide examples, we consider the issues involved in
using TSFCore to implement an ANA for the compact limited-memory BFGS (LBFGS) method
described in [14]. BFGS and other variable-metric quasi-Newton methods are used to approximate
a Hessian matrix B of second derivatives. This approximation is then used to generate search direc-
tions for various types of optimization algorithms. The Hessian matrix B and/or its inverse H � B � 1

is approximated using only changes in the gradient y � ∇ f
�
xk � 1 �	� ∇ f

�
xk � of some multi-variable

15

scalar function f
�
x � for changes in the variables s � xk � 1 � xk. A set of matrix approximations Bk

are formed using rank-2 updates where each update takes the form

Bk � 1 � Bk � BksksT
k Bk

sT
k Bksk

� ykyT
k

yT
k sk � (3)

In a limited-memory BFGS method, only a fixed maximum number mmax of updates are stored

S � �
s1 s2 ����� sm � (4)

Y � �
y1 y2 ����� ym � (5)

where m � mmax is the current number of stored updates and S and Y are multi-vectors (note that
the subscripts in (4)–(5) correspond to column indexes in the multi-vector objects, not iteration
counters k). When an optimization algorithm begins, m � 0 and m incremented each iteration
until m � mmax after which the method starts dropping older update pairs

�
s � y � to make room for

newer ones. In a compact LBFGS method, the inverse H (shown in Figure 3) of the quasi-Newton
matrix B (where when the index k is dropped, it implicitly refers to the current iteration Bk) on is
approximated using the tall thin multi-vectors S and Y along with a small (serial) coordinating matrix
Q (which is computed and updated from S and Y). The scalar g is chosen for scaling reasons and
H0 � B � 1

0 � gI represents the initial matrix approximation from which the updates are performed.
A similar compact formula also exists for B which involves the same matrices (and requires solves
with Q). In an SPMD configuration, the multi-vectors Y and S may contain vector elements spread
over many processors. However, the number of columns m in S and Y is usually less than 40.
Because of the small number of columns in S and Y , all of the linear algebra performed with the
matrix Q is performed serially using dense methods (i.e. BLAS and LAPACK). A parallel version
of the compact LBFGS method is implemented, for example, as an option in MOOCHO. TSFCore
supports efficient versions of all of the operations needed for a near-optimal parallel implementation
of this LBFGS method.

The requirements for this sub-ANA will be mentioned in several of the following sections along
with example code.

5.2 VectorSpace

The basic design of the VectorSpace interface was taken directly from HCL which is also used
in TSF and AbstractLinAlgPack.

We now show a simple code example as to the use of the VectorSpace and Vector inter-
faces. The following code snippet shows a function that performs several types of tasks:

temaplate<class Scalar>
void TSFCore::foo0(const VectorSpace<Scalar>& vecSpc, const LinearOp<Scalar>& M)
{

16

H = B
 -1
 = g
 I +

S,gY
 Q
 S
T
,gY
T

Figure 3. A compact limited-memory representation of the inverse of a

BFGS matrix.

TEST_FOR_EXCEPTION(!vecSpc.isCompatible(*M.domain()),std::logic_error,"Error!"); // Check compatibility
Teuchos::RefCountPtr<Vector<Scalar> > x = vecSpc.createMember(); // Create new vector x
Teuchos::RefCountPtr<Vector<Scalar> > y = M.range()->createMember(); // Create new vector y
assign(x.get(),1.0); // x = 1.0
M.apply(NOTRANS,*x,y.get()); // y = M*x
M.apply(TRANS,*y,x.get(),0.5,0.1); // x = 0.5*M*y + 0.1*x

}

The above code snippet shows how memory management in TSFCore is handled – through the
templated smart reference-counted pointer class Teuchos::RefCountPtr<> (see Section 7). The
vector objects pointed to by the objects x and y are accessed in various ways in the last three lines.
For instance, in the statement

assign(x.get(),1.0);

the raw C++ pointer (of type Vector<Scalar>*) to the underlying vector object is returned us-
ing the method RefCountPtr<>::get(). The function assign(...) is implemented through an
RTOp object and its implementation is shown in Section 5.3.1. The next statement

M.apply(NOTRANS,*x,y.get());

shows the created vectors being passed into the apply(...) method of a LinearOp object. The
expression *x invokes the method RefCountPtr<>::operator*() which returns a reference (of
type Vector<Scalar>&) to the underlying vector object.

17

5.2.1 General compatibility of Vector objects

There is one important aspect that distinguishes TSFCore::VectorSpace from vector space in-
terfaces in HCL and TSF for instance. In HCL 1.0, the compatibility of vector spaces is tested
with a virtual operator==(...) method. This implies that vector spaces will be compatible only
if they are of the same concrete type and have the same setup. Ideally, however, we do not want
to require that only vectors and vector spaces with the same concrete type to be compatible but
instead we would like to allow vectors and vector spaces of the same general type be compatible.
To see the difference, consider parallel programs running in an SPMD configuration where vector
elements are partitioned across processors and communication is handled using MPI [20]. There
are several different linear algebra libraries that are designed to work in such an environment such
as Aztec [28], Epetra [26] and PETSc [3]. TSFCore adapter subclasses would be created for vectors
and vector spaces for each of these packages. In principle, all implementations of SPMD MPI vec-
tors that have the same partitioning of elements to processors should be compatible, regardless of
which underlying libraries are involved. The RTOp design, given the appropriate VectorSpace
and Vector interfaces, allows the seamless integration of vectors of different concrete types given
the same general type. If all of these adapter subclasses inherited from the node interface classes
MPIVectorSpaceBase and MPIVectorBase (see the Doxygen documentation) which in-
clude an appropriate set of abstract methods (like determining compatibility of maps and access
to local vector data), then Epetra vectors should be transparently compatible with PETSc and Aztec
vectors and so on. This type of interoperability is demonstrated for serial vectors and vector spaces
in Section 5.3.3

5.3 Vector

The core design principles behind the Vector interface and the applyOp(...) method (which
accepts RTOp objects) are described in [9]. The benefits of the RTOp approach can be summarized
as follows.

1. LAL developers need only implement one operation — applyOp(...) — and not a large
collection of primitive vector operations.

2. ANA developers can implement specialized vector operations without needing any support
from LAL maintainers.

3. ANA developers can optimize time consuming vector operations on their own for the plat-
forms they work with.

4. Reduction/transformation operators are more efficient than using primitive operations and
temporary vectors.

18

--

// TSFCoreVectorStdOpsDecl.hpp

...

namespace TSFCore {

template<class Scalar> Scalar sum(const Vector<Scalar>& v); // result = sum(v(i))

template<class Scalar> Scalar norm_1(const Vector<Scalar>& v); // result = ||v||1

template<class Scalar> Scalar norm_2(const Vector<Scalar>& v); // result = ||v||2

template<class Scalar> Scalar norm_inf(const Vector<Scalar>& v_rhs); // result = ||v||inf

template<class Scalar> Scalar dot(const Vector<Scalar>& x

,const Vector<Scalar>& y); // result = x’*y

template<class Scalar> Scalar get_ele(const Vector<Scalar>& v, Index i); // result = v(i)

template<class Scalar> void set_ele(Index i, Scalar alpha

,Vector<Scalar>* v); // v(i) = alpha

template<class Scalar> void assign(Vector<Scalar>* y, const Scalar& alpha); // y = alpha

template<class Scalar> void assign(Vector<Scalar>* y

,const Vector<Scalar>& x); // y = x

template<class Scalar> void Vp_S(Vector<Scalar>* y, const Scalar& alpha); // y += alpha

template<class Scalar> void Vt_S(Vector<Scalar>* y, const Scalar& alpha); // y *= alpha

template<class Scalar> void Vp_StV(Vector<Scalar>* y, const Scalar& alpha

,const Vector<Scalar>& x); // y = alpha*x + y

template<class Scalar> void ele_wise_prod(const Scalar& alpha

,const Vector<Scalar>& x, const Vector<Scalar>& v, Vector<Scalar>* y); // y(i)+=alpha*x(i)*v(i)

template<class Scalar> void ele_wise_divide(const Scalar& alpha

,const Vector<Scalar>& x, const Vector<Scalar>& v, Vector<Scalar>* y); // y(i)=alpha*x(i)/v(i)

template<class Scalar> void seed_randomize(unsigned int); // Seed for randomize()

template<class Scalar> void randomize(Scalar l, Scalar u, Vector<Scalar>* v); // v(i) = random(l,u)

} // end namespace TSFCore

--

Figure 4. Some standard vector operations declared in the header file

TSFCoreVectorStdOpsDecl.hpp and defined in the TSFCoreVector-

StdOps.hpp header file.

5. ANA-appropriate vector interfaces that desire built-in standard vector operations (i.e. axpy
and norms) can use RTOp operators for the default implementations of these operations (see
AbstractLinAlgPack::Vector).

The applyOp(...) method is described in more detail in Section 5.3.1. Note that this
approach does not hinder the development of convenience functions in any way. In fact, a set
of basic operations is already available in the header file TSFCoreVectorStdOpsDecl.hpp. The
declarations for the functions in this file are shown in Figure 4. Note, to use these template functions
you should include the definitions from TSFCoreVectorStdOps.hpp (never directly #include a
xxxDecl.hpp file unless you know what you are doing, instead, include the xxx.hpp file for all of
the TSFCore code). Using one of these non-member vector functions is transparently obvious and
there is not even one hint that the method Vector::applyOp(...) is involved.

19

5.3.1 Vector::applyOp(...)

Several important issues regarding the specification of the Vector::applyOp(...) method
were not discussed in [9]. Before describing these issues, note that the Vector::applyOp(-
...) method is not directly called by a client (it is protected) but instead is called through a
non-member (friend) function of the same name. This is done to provide a uniform way to deal
with all of the allowed permutations of the number and types of vector arguments to this function
when the function is called by the client. Therefore, we will only consider the prototype for the
non-member function TSFCore::appyOp(...) which is

template<class Scalar>
void TSFCore::applyOp(

const RTOpPack::RTOpT<Scalar> &op
,const size_t num_vecs, const Vector<Scalar>* vecs[]
,const size_t num_targ_vecs , Vector<Scalar>* targ_vecs[]
,RTOp_ReductTarget reduct_obj
,const Index first_ele = 1, const Index sub_dim = 0, const Index global_offset = 0
);

and has nine arguments: the RTOp object that defines the reduction/transformation operation to be
performed op; the non-mutable input vectors specified by num vecs and vecs[] (num vecs==0 and
vecs==NULL allowed); the mutable input/output vectors specified by num targ vecs and targ-
vecs[] (num targ vecs==0 and targ vecs==NULL allowed); the input/output opaque reduction

target object reduct obj (must be set to the value RTOp REDUCT OBJ NULL if no reduction is de-
fined); the range of elements defining the sub-vector to apply the operator to specified by first ele
and sub dim; and the global offset global offset to use when applying coordinate-variant opera-
tors.

The role of the first five arguments in TSFCore::applyOp(...) should be clear from the dis-
cussion in [9]. However, the special handling of the object reduct obj and the use cases where the
last three arguments are important need to be carefully explained since they are critical to the suc-
cess of this design. In short, what this specification allows is the ability to take Vector objects and
then be able to put together abstract compositions of them to create new (logical) vector Vector
objects. There are primarily four use cases that this specification is designed to support: (a) treating
all of the elements in a Vector object a a single logical vector, (b) targeting an RTOp operator to
a specific element or range of elements, (c) creating a sub-view of an existing vector and treating it
as a vector in its own right, and (d) creating a new, larger composite (i.e. block, or product) abstract
vector out of a collection of other vector objects.

The first use case (a), where all of the elements in a Vector object are treated as a sin-
gle logical vector, is the most common one. Here, the default argument values of first ele=1,
sub dim=0 (the value 0 is a flag to indicate that all of the remaining elements should be included)
and global offset=0 are used and TSFCore::applyOp(...) is called with the vector arguments.
For example, consider the invocation of an assignment-to-scalar transformation operator in the fol-
lowing function.

20

template<class Scalar>
void TSFCore::assign(Vector<Scalar>* y, const Scalar& alpha)
{

TEST_FOR_EXCEPTION(y==NULL,std::logic_error,"assign(...), Error!"); // Validate input
RTOpPack::TOpAssignScalar<Scalar> assign_scalar_op; // Create the operator
Vector<Scalar>* targ_vecs[] = { y }; // Set up vector args
applyOp<Scalar>(assign_scalar_op,0,NULL,1,targ_vecs,RTOp_REDUCT_OBJ_NULL); // Invoke operator

}

In the above function, the operator assign scalar op of type RTOpPack::RTOpAssignScalar
only performs a transformation which does not require a reduction object. In these cases the special
value of RTOp REDUCT OBJ NULL must be passed in for the opaque reduction object reduct obj.

If a reduction is being performed, the reduction object is initialized prior to a single call to
TSFCore::applyOp(...) and then the reduction value is extracted. The following function shows
an example where the norm ��� � ��� 2 is computed

template<class Scalar>
Scalar TSFCore::norm_2(const Vector<Scalar>& v)
{

RTOpPack::ROpNorm2<Scalar> norm_2_op; // Create the RTOp operator object
RTOpPack::ReductTargetT<Scalar> norm_2_targ(norm_2_op); // Create (init) reduction object
const Vector<Scalar>* vecs[] = { &v }; // Set up non-mutable vector args
applyOp<Scalar>(norm_2_op,1,vecs,0,NULL,norm_2_targ.obj(); // Invoke the reduction operator
return norm_2_op(norm_2_targ); // Extract reduction value

}

A great many implementations of RTOp operator subclasses are already available and wrapper func-
tions to several of the more standard operations, including the above functions assign(y, alpha
) and norm 2(v), are defined in the header file TSFCoreVectorStdOps.hpp shown in Figure 4.

The second use case (b) is where the client targets an RTOp operator for a specific element or set
of elements in a Vector object. Two important examples are getting and setting individual vector
elements. This can be accomplished without having to write specialized RTOp subclasses for these
cases. For example, getting an element can be performed using a standard RTOp subclass as is done
in the following function.

template<class Scalar>
Scalar TSFCore::get_ele(const Vector<Scalar>& v, Index i)
{

RTOpPack::ROpSum<Scalar> sum_op; // Create RTOp operator object
RTOpPack::ReductTargetT<Scalar> sum_targ(sum_op); // Create (init) reduction object
const Vector<Scalar>* vecs[1] = { &v }; // Set up non-mutable vector args
applyOp<Scalar>(sum_op,1,vecs,0,NULL,sum_targ.obj(),i,1); // Invoke the reduction operator
return sum_opt(sum_targ); // Extract reduction value

}

In the above call to TSFCore::applyOp(...), the argument global offset is left at its default
value of 0, since this argument is ignored by the RTOp object sum op anyway (the sum operator is
coordinate invariant).

21

Setting a vector element is performed in a similar manner using the same transformation RTOp
operator subclass for assigning the elements of a vector that was used in the assign(...) function
shown above. The following function shows how setting a vector element is performed using this
transformation operator.

template<class Scalar>
void TSFCore::set_ele(Index i, Scalar alpha, Vector<Scalar>* v)
{

TEST_FOR_EXCEPTION(v==NULL,std::logic_error,"set_ele(...), Error!"); // Validate input
RTOpPack::TOpAssignScalar<Scalar> assign_scalar_op; // Create op object
Vector<Scalar>* targ_vecs[1] = { v }; // Set up vector args
applyOp<Scalar>(assign_scalar_op,0,NULL,1,targ_vecs,RTOp_REDUCT_OBJ_NULL,i,1); // Invoke operator

}

Again, since the assignment operator is also coordinate invariant, the assign scalar op object
ignores the global offset argument so global offset is left at its default value in the call to
TSFCore::applyOp(...).

For an example of the third use case (c), where a sub-view of an existing vector is treating as a
vector in its own right, consider an optimization algorithm where the state y and design u variables
are physically concatenated into a single serial vector xT � �

yT uT � . For example, if ny � 10
and nu � 5, then the dimension of the vector x would be nx � 15. There are parts of the algorithm
where it is most convenient to treat all of the variables x the same and there are others where access
to the individual state y and design u sub-vectors of x is required. Now suppose that a Vector
object x is directly used by an optimization algorithm. When the optimization algorithm needs to
apply an RTOp operator to the state variables y, it sets first ele=1 and sub dim=10 and then calls
TSFCore::applyOp(...) (leaving the default value of global offset=0). When the algorithm
needs to apply an RTOp operator to the design variables u, it sets first ele=11 and sub dim=5
and then calls TSFCore::applyOp(...) (also leaving the default value of global offset=0). In
each case, if a reduction is being performed, the reduction object is initialized prior to a single call to
TSFCore::applyOp(...) and then the reduction value is extracted just as in the first use case (a).
For example, the following function computes the ��� � ��� 2 norms for the state and design sub-vectors
given the vector object x.

template<class Scalar>
void TSFCore::compute_norm_2(const Vector<Scalar>& x, Index ny, Scalar* nrm_2_y, Scalar* nrm_2_u)
{

const Index nx = x.space()->dim(), nu = nx - ny; // Get dimensions
RTOpPack::ROpNorm2<Scalar> norm_2_op; // Create op object
RTOpPack::ReductTargetT<Scalar> norm_2_targ(norm_2_op); // Create (init) reduction object
const Vector<Scalar>* vecs[1] = { &x }; // Set up non-mutable vector args
applyOp<Scalar>(norm_2_op,1,vecs,0,NULL,norm_2_targ.obj(),1,ny); // Invoke the operator for y
*nrm_2_y = norm_2_op(norm_2_targ); // Extract the value of ||y||2
norm_2_targ.reinit() // Reinitialize reduction object
applyOp<Scalar>(norm_2_op,1,vecs,0,NULL,norm_2_targ.obj(),ny+1,ny+nu);// Invoke operator for u
*nrm_2_u = norm_2_op(norm_2_targ); // Extract the value of ||u||2

}

22

Finally, as an example of the fourth use case (d), where a new larger composite (i.e. block) abstract
vector is created out of a collection of other abstract vectors, we use the same optimization example
as above, except this time the vector x is actually represented as two separate Vector objects y
and u. In this case, a new composite blocked or product vector

x �
�

y
u �

is abstractly created which lies in a new product vector space X � Y � U. With that said, consider
how the element with the maximum absolute value and its index can be determined for the full
vector x given separate Vector objects for the state y and design u variables. This can be done with
the predefined RTOp subclass ROpMaxAbsEle which is applied in the following function.

template<class Scalar>
void TSFCore::compute_max_abs_ele(const Vector<Scalar>& y, const Vector<Scalar>& u

,Scalar* x_max, Index* x_i)
{

const Index ny = y.space()->dim(), nu = u.space()->dim(); // Get dimensions
RTOpPack::ROpMaxAbsEle<Scalar> max_abs_ele_op; // Create op object
RTOpPack::ReductTargetT<Scalar> max_abs_ele_targ(max_abe_ele_op); // Create (init) reduct object
const Vector<Scalar>* vecs[1]; // Declare array
vecs[0] = &y; // Set pointer to y
applyOp<Scalar>(max_abs_ele_op,1,vecs,0,NULL,max_abs_ele_targ.obj(),1,0,0);// Reduce over y
vecs[0] = &u; // Set pointer to u
applyOp(max_abs_ele_op,1,vecs,0,NULL,max_abs_ele_targ.obj(),1,0,ny);// Combine with reduction over u
*x_max = max_abs_ele_op(max_abse_ele_targ).x_max(); // Extract reduction values
*x_i = max_abs_ele_op(max_abse_ele_targ).x_i(); // ...

}

The above reduction operation is not coordinate invariant and therefore the value of global offset
is critical in the calls to TSFCore::applyOp(...).

Note that optimization algorithms are not the only ANAs that require the (logical) composition
of individual Vector objects into a single vector. For example, SFE methods form a large blocked
SFE system out of several smaller deterministic systems [40]. There can also be multiple levels
of blocking such as embedding a blocked SFE set of state vectors yT � �

ỹT
1 ỹT

2 ����� ỹT
N � into

the blocked set of optimization variables xT � �
yT uT � . The basic functionality in Vector-

::applyOp(...) supports all of these examples through the above use cases.

5.3.2 Explicit access to Vector elements

Another important feature of the Vector interface regards the methods that can be used to gain
explicit access to the vector elements (which are not shown in the UML diagram in Figure 2) .
First, it should be noted that requesting explicit access to vector elements is ill-advised in general
(especially in an SPMD or client-server environment). However, there are instances where this
is perfectly appropriate. One example is when one needs to access elements for vectors in the

23

domain space of a MultiVector object. This, for example, is needed in the implementation of
the compact LBFGS method described in Section 5.1 above. For the implementation of this compact
LBFGS matrix, it is critical to be able to explicitly access elements in the domain space of Y and S
in order to compute and update the coordinating matrix Q. Another situation when explicit access to
vector elements is appropriate and needed is when the vector is in a small dimensional design space
in an optimization problem and where the ANA uses dense quasi-Newton methods to approximate
the reduced Hessian of the Lagrangian (e.g. this is one option in MOOCHO).

The methods in Vector support three different types of use cases with respect to explicit
element access: (a) extracting a non-mutable view of the vector elements; (b) extracting a mutable
view of the vector elements and then committing the changes back to the vector object; and finally,
(c) explicitly setting the elements in the vector. The prototypes for these methods are shown below.

namespace TSFCore {
teamplate<class Scalar>
class Vector {
public:

...
virtual bool isInCore() const;
virtual void getSubVector(const Range1D& rng, RTOpPack::SubVectorT<Scalar>* sub_vec) const;
virtual void freeSubVector(RTOpPack::SubVectorT<Scalar>* sub_vec) const;
virtual void getSubVector(const Range1D& rng, RTOpPack::MutableSubVectorT<Scalar>* sub_vec);
virtual void commitSubVector(RTOpPack::MutableSubVectorT<Scalar>* sub_vec);
virtual void setSubVector(const RTOpPack::SparseSubVectorT<Scalar>& sub_vec);
...

};
} // namespace TSFCore

All of these methods have reasonably efficient default implementations based on fairly sophis-
ticated RTOp subclasses and Vector::applyOp(...). The default implementations of the
getSubVector(...) methods require dynamic memory allocation. For most use cases, Vector
subclasses usually do not need to override these methods for the sake of efficiency but may need to
override them for other reasons (see the subclass SerialVector in Section 5.3.3 and the interface
MPIVectorBase in the Doxygen documentation). The method isInCore() returns true if all
of the vector’s elements are easily accessible is all of the calling processes and therefore these ex-
plicit vector access methods are an efficient way to get at the explicit elements. This method should
not generally be called by typical client code but instead is designed to be used by more specialized
types of purposes (e.g. see the class MPIVectorSpaceBase in the Doxygen documentation).

In the first use case (a), extracting and releasing a non-mutable view of the vector elements
involves calling the const methods getSubVector(...) and freeSubVector(...) respectively.
These methods use the C++ class RTOpPack::SubVectorT<> that is build into the C++ interfaces
for RTOp and was therefore a natural choice for this purpose. To demonstrate the use of these
methods the following example function copies the elements from a Vector object into a raw C++
array.

teamplate<class Scalar>

24

void foo1(const Vector<Scalar>& x, Scalar v[])
{

RTOpPack::SubVectorT<Scalar> sub_vec; // Create (int) subvector view object
x.getSubVector(Range1D(),&sub_vec); // Initialize the view object
for(Index i = 0; i < sub_vec.subDim(); ++i) // Loop through the explicit elements

v[i] = sub_vec(i+1); // Extract values
x.freeSubVector(&sub_vec); // Free the view of the vector x

}

In the statement

x.getSubVector(Range1D(),&sub_vec);

the constructed Range1D() object represents the full range of vector elements (this is similar to the
colon ’:’ syntax in Matlab). Note that this method call may require dynamic memory allocation
in order to create a strided view of the vector elements that is represented in the output argument
sub vec. The data pointed to by sub vec.values may be dynamically allocated which is why it is
necessary to call

x.freeSubVector(&sub_vec);

after the view in sub vec is no longer needed in order to possibly free dynamically allocated mem-
ory.

The process of extracting, modifying and committing a mutable view of vector elements, in
the second use case (b), involves the non-const methods getSubVector(...) and commitSub-
Vector(...) respectively. These methods use the RTOp C++ class RTOpPack::MutableSub-
VectorT<>. As an example, consider the following function that accepts a raw C++ array of values
and then adds them to a Vector object’s elements.

template<class Scalar>
void foo2(const Scalar v[], Vector<Scalar>* x)
{

RTOpPack::MutableSubVectorT<Scalar> sub_vec; // Create (init) subvector view object
x->getSubVector(Range1D(),&sub_vec); // Initialize the view object
for(Index i = 0; i < sub_vec.subDim(); ++i) // Loop through the explict elements

sub_vec(i+1) += v[i]; // add v[] to elements
x->commitSubVector(&sub_vec); // Commit and free the view of x

}

The last use case (c) is where a client simply wants to set elements without creating a view.
This is accomplished through the non-const method setSubVector(...). This method uses yet
another built-in RTOp C++ class called RTOpPack::SparseSubVectorT<>. This class is differ-
ent from the RTOpPack::SubVectorT<> and RTOpPack::MutableSubVectorT<> classes in that
RTOpPack::SparseSubVectorT<> also allows the representation of sparse vectors. This is very

25

useful for quickly and efficiently setting up sparse Vector objects. For example, one way to ini-
tialize a Vector object to represent a column of identity (i.e. an “eta” vector e i) is to use a function
like the following.

template<class Scalar>
void set_eta_vec(Index i, Vector<Scalar>* e_i)
{

const Scalar av[] = { 1.0 }; // Create array for the values
const Index ai[] = { i }; // Create array for the indexes
RTOpPack::SparseSubVectorT<Scalar> sub_vec(// Initialize sub_vec with sparse ele arrays

0,e_i->dim(),1,av,1,ai,1,0,1); // ...
x->setSubVector(sub_vec); // Set all x = 0 except x(i) = 1.0

}

5.3.3 Serial vectors and vector spaces

One of the remarkable features of the design of the VectorSpace and Vector interfaces is that
they allow, in principle, for all serial vectors of the same dimension to be automatically compatible
with little work. Here we use the term serial to mean that all of the vector elements are stored in core
in the same process where the ANA is running. While this may not sound remarkable at first thought
consider the fact that there exist numerous C++ classes libraries that contain some concept of a serial
vector [35, 41, 42, 43] which are all largely incompatible (except perhaps through explicit element
access using operator[] or operator() but certainty only through compile time polymorphism
(i.e. C++ templates)). With TSFCore, these incompatibilities are not an issue. The way that this
works is exemplified by the subclasses SerialVectorSpace and SerialVector which are derived
from the node subclasses SerialVectorSpaceBase and SerialVectorBase respectively.

The first step is for every serial VectorSpace subclass to implement the isCompatible(-
...) method in the same way as shown below (using SerialVectorSpaceBase as the example).

template<class Scalar>
bool SerialVectorSpaceBase<Scalar>::isCompatible(const VectorSpace<Scalar>& aVecSpc) const
{

return this->dim() == aVecSpc.dim() && this->isInCore() && aVecSpc.isInCore();
}

The above implementation makes the assumption that if the dimensions of the vector spaces are the
same and both vectors are stored in core, then the vectors themselves should also be compatible
(through the efficient use of the explicit sub-vector element access methods, first introduced in
Section 5.3.2, as described below). This also technically assumes consistent definitions of the scalar
product but this will generally not be an issue.

The second critical step is to have every serial Vector subclass override of the explicit sub-
vector access methods getSubVector(...) (both the const and non-const versions), free-
SubVector(...) and commitSubVector(...) to perform these operations without calling the
applyOp(...) method (see the subclass SerialVector).

26

The third step is to have every serial Vector subclass override and implement the method
applyOp(...) in the same way as shown below (using the SerialVectorBase node subclass
as the example).

template<class Scalar>
void TSFCore::SerialVectorBase::applyOp(

const RTOpPack::RTOpT<Scalar> &op, const size_t num_vecs, const Vector<Scalar>* vecs[]
,const size_t num_targ_vecs, Vector<Scalar>* targ_vecs[]
,RTOp_ReductTarget reduct_obj
,const Index first_ele, const Index sub_dim, const Index global_offset
) const

{
...
in_applyOp_ = true;
TSFCore::apply_op_serial(

op,num_vecs,vecs,num_targ_vecs,targ_vecs,reduct_obj
,first_ele,sub_dim,global_offset
);

in_applyOp_ = false;
}

The implementation of the above applyOp(...) method is really quite simple and it uses a helper
function apply op serial(...) that takes care of all of the details of calling the sub-vector ex-
traction methods on the Vector objects. No dynamic casting is performed during this process and in
the case of SerialVector, no dynamic memory allocation is performed either. Therefore, for suf-
ficiently large serial vectors, the overhead of these function calls will be swamped by computation
in the RTOp operators, yielding near-optimal performance.

There are cases where it can not be determined until runtime whether a vector is serial or not. In
these cases the concrete subclasses can not simply derive from the SerialVectorSpaceBase and
SerialVectorBase node subclasses but must instead implement this this functionality themselves
to be used when it is determined that the vectors are indeed serial (see the Epetra TSFCore adapter
subclasses TSFCore::EpetraVectorSpace and TSFCore::EpetraVector for instance).

By using this simple approach to developing serial VectorSpace and Vector subclass, the
details of putting together many different types of numerical algorithms becomes much easier.

5.4 LinearOp

This section continues the discussion started in Section 4 for the LinearOp interface and includes
some examples.

5.4.1 LinearOp::apply(...)

The C++ prototype for the Vector version of LinearOp::apply(...) is

27

namespace TSFCore{
template<class Scalar>
class LinearOp : public virtual OpBase<Scalar> {
public:

...
virtual void apply(

ETransp M_trans, const Vector<Scalar> &x, Vector<Scalar> *y
,Scalar alpha = 1.0, Scalar beta = 0.0
) const = 0;

...
};
} // namespace TSFCore

where the type ETransp is the C++ enum

enum ETransp { NOTRANS, TRANS, CONJTRANS };

The use of an enum instead of a simple bool for the M trans argument is very important. The use of
an enum disallows the implicit conversion from other types like char, int, double and any type of
pointer. Using enums instead of bools requires more typing but greatly helps to avoid introducing
bugs into the program that are extremely difficult to track down. In addition, the use of an enum
allows for more than just two values such as is shown for the third value CONJTRANS which signifies
the complex conjugate.

The MultiVector version of LinearOp::apply(...) has an identical prototype except
the Vector arguments are replaced with MultiVector arguments. The MultiVector version
has a default implementation based on the Vector version as described in Section 5.5.4.

In the above prototype, the scalars α and β default to 1 � 0 and 0 � 0 respectively. Therefore, by
leaving the default values, the default operation becomes

y � op
�
M � x

which is the same form that is declared in HCL LinearOperator::apply(...). However,
the scalars α and β provide direct calls to BLAS functions and remove the need to create temporaries
when performing long operations (see Section 5.5.5). For example, consider the following long
expression

y � Au � γBT v � ηCw

where A, B and C are LinearOp objects; and y, u, v and w are Vector objects. Using TSFCore,
this long operation can be performed as follows

template<class Scalar>
void TSFCore::long_expression(

const LinearOp<Scalar>& A, const Vector<Scalar>& u
,Scalar gamma, const LinearOp<Scalar>& B, const Vector<Scalar>& u
,Scalar eta, const LinearOp<Scalar>& C, const Vector<Scalar>& w
,Vector<Scalar>* y

28

)
{

A.apply(NOTRANS,u,y); // y = A*u
B.apply(TRANS,v,y,gamma,1.0); // y += gamma*B’*v
C.apply(NOTRANS,w,y,eta,1.0); // y += eta*C*w

}

where no temporary vectors are required. Note that if the arguments alpha=1.0 and beta=0.0
where fixed (as they are in HCL for instance), the above operation would have to be implemented
as:

template<class Scalar>
void TSFCore::bad_long_expression(

const LinearOp<Scalar>& A, const Vector<Scalar>& u
,Scalar gamma, const LinearOp<Scalar>& B, const Vector<Scalar>& u
,Scalar eta, const LinearOp<Scalar>& C, const Vector<Scalar>& w
,Vector<Scalar>* y
)

{
Teuchos::RefCountPtr<Vector<Scalar> >

t = A.range()->createMember(); // Create a temporary to store the intermediate products
A.apply(NOTRANS,u,y); // y = A*u
B.apply(TRANS,v,t.get()); // t = B’*v
axpy(gamma,*t,y); // y += gamma*t
C.apply(NOTRANS,w,t.get()); // t = C*w
axpy(eta,*t,y); // y += eta*t

}

Not only is the function bad long expression(...) slightly less efficient than long expression(-
...) but it is also longer and more difficult to write. The arguments alpha and beta are important
to achieve a near-optimal implementation and for ease of use.

Note that some implementations of LinearOp may not be able to apply the operator with a
value of β �� 0 without creating at least one temporary vector (or multi-vector). However, this is a
minor performance issue in most use cases.

5.4.2 Optional support for adjoints

The LinearOp interface only optionally supports transposed (adjoint) matrix-vector multiplica-
tions and linear solves. If the method opSupported(M trans) returns false, then the argu-
ment M trans, when passed to apply(...), will result in an OpNotSupported exception being
thrown. This specification, while not ideal from an object-orientation purest point of view, does
satisfy the basic principles outlined in Section 7.

29

5.5 MultiVector

While the concepts of a VectorSpace and Vector are well established, the concept of a multi-
vector is fairly new. The idea of a multi-vector was motivated by the library Epetra [26] which
contains mostly concrete implementations of distributed-memory linear algebra classes using MPI
[20]. A key issue is how multi-vectors and vectors relate to each other. In Epetra, the vector class
is a specialization of the multi-vector class. This make sense from an implementation point of
view. The Epetra approach takes the view that a vector is a type of multi-vector. An arguably more
natural view from an abstract mathematical perspective is that multi-vectors are composed out of
a set of vectors where each vector represents a column of the multi-vector. This is the view that
multi-vectors have or contain vectors and this is the approach that has been adopted for TSFCore as
shown in Figure 2.

Note that a multi-vector is not the same thing as a blocked or product vector. In fact, multi-
vectors and product vectors are orthogonal concepts and it is possible to have product multi-vectors.
Product vectors and vector spaces are discussed in Sections 5.3.1 and 8.2.

All of the below examples will involve the compact LBFGS implementation described above
in Section 5.1. For these examples we will consider interactions with the two principle Multi-
Vector objects Y store and S store which each have mmax columns.

5.5.1 Accessing columns of MultiVector as Vector objects

The columns of a MultiVector object can be accessed using the const or non-const col(j)
methods which return RefCountPtr<> objects which points to an abstract Vector view of a col-
umn. The prototypes for these methods are shown below.

namespace TSFCore{
template<class Scalar>
class MultiVector : virtual public LinearOp<Scalar> {
public:

...
virtual Teuchos::RefCountPtr<Vector<Scalar> > col(const Index j) = 0;
virtual Teuchos::RefCountPtr<const Vector<Scalar> > col(const Index j) const;
...

};
} // namespace TSFCore

Actually, the non-const version of col(...) is the only pure virtual function in MultiVector
and therefore the only function that must be overridden in order to create a concrete (but subopti-
mal) MultiVector subclass. All of the other virtual methods in MultiVector have default
implementations based on this method and Vector::applyOp(...).

The following example function copies the most recent update vectors s and y into the multi-
vectors S store and Y store and increments the counter m for a compact LBFGS implementation.

30

template<class Scalar>
void TSFCore::update_S_Y(const Vector<Scalar>& s, const Vector<Scalar>& y

,MultiVector<Scalar>* S_store, MultiVector<Scalar>* Y_store, int* m)
{

const int m_max = S_store->domain()->dim(); // Get the maximum number of updates allowed
if(*m < m_max) {

++(*m); // Increment the number of updates
assign(S_store->col(*m).get(),s); // Copy in s into S(:,m)
assign(Y_store->col(*m).get(),y); // Copy in y into Y(:,m)

}
else {

// We must drop the oldest pair (s,y) and copy in the newest pair
...

}
}

Note that the MultiVector object that col(...) is called on is not guaranteed to be up-
dated until the returned Vector object is destroyed when the RefCountPtr<> object returned
from col(...) goes out of scope. The use in the above function guarantees that this happens
after each call to the assign(...) function.

5.5.2 MultiVector sub-views

In addition to being able to access the columns of a MultiVector object one column at a time, a
client can also create const and non-const MultiVector views of the columns using one of the
subView(...) methods shown below.

namespace TSFCore {
template<class Scalar>
class MultiVector : virtual public LinearOp<Scalar> {
public:

...
virtual Teuchos::RefCountPtr<MultiVector<Scalar> > subView(const Range1D& col_rng);
virtual Teuchos::RefCountPtr<const MultiVector<Scalar> > subView(const Range1D& col_rng) const;
virtual Teuchos::RefCountPtr<MultiVector<Scalar> > subView(const int numCols

,const int cols[]);
virtual Teuchos::RefCountPtr<const MultiVector<Scalar> > subView(const int numCols

,const int cols[]) const;
...

};
} // namespace TSFCore

The ability to extract a MultiVector sub-view of a contiguous set of columns of a Multi-
Vector object, which is supported by the first two methods, is required in order to implement
certain types of numerical methods. For example, the implementation of the compact LBFGS
method described above in Section 5.1 requires this functionality. The following example func-
tion shows how the contiguous subView(...) method is used in an LBFGS implementation
where MultiVector storage objects S store and Y store are used to create MultiVector

31

view objects S and Y for only the number of updates currently stored. These sub-view objects are
used in later example code.

template<class Scalar>
Teuchos::RefCountPtr<const TSFCore::MultiVector<Scalar> >
TSFCore::get_updated(const MultiVector<Scalar>& Store, int m)
{

return Store.subView(Range1D(1,m));
}

The second form of the subView(...) method takes a list of (possibly unsorted but unique)
column indexes cols[] and returns a MultiVector view object of those columns. This func-
tionality is very useful in the development of some types of ANAs (e.g. block Krylov iterative linear
equation solvers).

Note that both forms of the subView(...) method have (suboptimal) default implementa-
tions based on the MultiVectorCols utility subclass. This MultiVectorCols class, coincidentally,
is also used to provide a general (but suboptimal) implementation of MultiVector just given an
implementation of Vector. This utility subclass is also used to provide default implementations
for many of the MultiVector-related methods which includes the default implementation of the
VectorSpace::createMembers(numMembers)method.

5.5.3 MultiVector support for applyOp(...)

RTOp operators can be applied to the columns of a MultiVector object one column at a time
using the col(...) method. However, a potentially more efficient approach is to allow the
MultiVector object to apply the RTOp operator itself. This is supported by the applyOp(-
...) methods on MultiVector. The applyOp(...) methods are not called directly (they
are protected) but instead are called by non-member (friend) methods applyOp(...) which
then invoke the member functions. This approach allows a more natural way to invoke a reduc-
tion/transformation operation in line with the mathematical description in [9].

There are two versions of MultiVector::applyOp(...): one that returns a list of reduc-
tion objects (one for each column of the multi-vector) and another that uses two RTOp operators to
reduce all of the reduction objects over each column into single reduction object which is returned.
Both versions of the MultiVector::applyOp(...) have default implementations that are
based on MultiVector::col(...) and Vector::applyOp(...).

Below, two example operations, which are defined in the header TSFCoreMultiVectorStd-
Ops.hpp, are shown that are needed by various ANAs.

The first example is the update operator αU � V � V and is implemented in the following
function.

32

template<class Scalar>
void TSFCore::update(Scalar alpha, const MultiVector<Scalar>& U, MultiVector<Scalar>* V)
{

TEST_FOR_EXCEPTION(V==NULL,std::logic_error,"axpy(...), Error!"); // Validate input
RTOpPack::TOpAxpy<Scalar> axpy_op(alpha); // Create (init) op object
const MultiVector<Scalar>* multi_vecs[] = { &U }; // Set up non-mutable mv args
MultiVector<Scalar>* targ_multi_vecs[] = { V }; // Set up mutable mv args
applyOp<Scalar>(axpy_op,1,multi_vecs,1,targ_multi_vecs,NULL); // Invoke the transformation operator

}

In the above call to applyOp(...), a NULL pointer is passed in for the array of reduction objects
which is allowed since this RTOp operator does not perform a reduction.

The second example is a column-wise dot product operation and is implemented in the following
function.

template<class Scalar>
void TSFCore::dot(const MultiVector<Scalar>& V1, const MultiVector<Scalar>& V2, Scalar dot[])
{

const int m = V1.domain()->dim(); // Get the num cols
RTOpPack::ROpDot<Scalar> dot_op; // Create op object
std::vector<RTOp_ReductTarget> dot_targs(m); // Array of reduct objects
for(int kc = 0; kc < m; ++kc) // For each column:

dot_op.reduct_obj_create_raw(&(dot_targs[kc]=RTOp_REDUCT_OBJ_NULL)); // Create reduct object
const MultiVector<Scalar>* multi_vecs[] = { &V1, &V2 }; // Set up non-mutable mv args
applyOp(dot_op,2,multi_vecs,0,NULL,&dot_targs[0]); // Invoke the reduction operator
for(int kc = 0; kc < m; ++kc) { // For each column:

dot[kc] = dot_op(dot_targs[kc]); // Extract dot product val
dot_op.reduct_obj_free_raw(&(dot_targs[kc])); // Free each reduction object

}
}

Note that the above reduction operation will be performed with a single global reduction when per-
formed on a distributed-memory parallel computer (using MPI). Without the concept of a Multi-
Vector or support for the applyOp(...) method, this type of multi-vector reduction operation
would require m separate global reductions, where m is the number of columns in the multi-vector.
The presence of this method is critical for a near-optimal implementation with respect to minimizing
communication in a distributed memory program.

5.5.4 Vector and MultiVector correspondence

The interface class LinearOp takes the perspective that most subclasses will naturally prefer to
implement the Vector version of the method apply(...) and let the default implementation
of the MultiVector version of this method deal with MultiVector objects. There are many
cases where there is no way to provide more specialized implementations of these operations for
multi-vectors. For example, while the BLAS and LAPACK are designed from the ground up to be
more efficient with multiple right-hand-side vectors, most current implementations of sparse direct

33

linear solvers unfortunately only support the solution of single linear systems (e.g. the Harwell
solvers such as MA47 and MA48 [46]). This realization provides the motivation for choosing the
Vector versions of these methods as the default methods for subclasses to override. With that
said, if a LinearOp subclass can provide an optimized implementation of the MultiVector
version of the apply(...) method, does such a subclass also have to provide a completely
independent implementation of the Vector version of this method? The answer is no. By using
the provided utility subclass MultiVectorCols, a MultiVector wrapper can easily be created
for any Vector object. The following example shows how a LinearOp subclass, for instance,
can easily provide support for the Vector version of apply(...) when providing an optimized
implementation of the MultiVector version.

namespace TSFCore {
template<class Scalar>
class MyLinearOp : public LinearOp<Scalar> {
public:

...
void apply(ETransp M_trans, const Vector<Scalar> &x, Vector<Scalar> *y, Scalar alpha

,Scalar beta) const
{

const MultiVectorCols<Scalar>
X(Teuchos::rcp(const_cast<Vector<Scalar>*>(&x),false)); // Create mv views

MultiVectorCols<Scalar>
Y(Teuchos::rcp(y,false)); // ...

apply(alpha,M_trans,X,&Y,beta); // Call mv version
}
void apply(ETransp M_trans, const MultiVector<Scalar> &X, MultiVector<Scalar> *Y, Scalar alpha

,Scalar beta) const
{

// Optimized implementation for multi-vectors
...

}
...

};
} // namespace TSFCore

Note that the constructor for the the class MultiVectorCols, for instance called in the line

MultiVectorCols<Scalar>
Y(Teuchos::rcp(y,false));

takes a RefCountPtr<const Vector<Scalar> > object. In order to call this constructor with
memory not owned by the client (which is the case here), the rcp(...) function must be called
with the argument owns mem = false so that the last RefCountPtr<const Vector<Scalar> >
object to be destroyed will not try to free the vector argument.

34

5.5.5 MultiVector acting as a LinearOp

The last issues to discuss with regard to MultiVector relate to where it fits in the class hierarchy.
The decision adopted for TSFCore was to make MultiVector specialize LinearOp. In other
words, a MultiVector object can also act as a LinearOp object.

As an example where this is needed, consider using the LBFGS inverse matrix H shown in
Figure 3 as a linear operator which acts on multi-vector arguments U and V in an operation of the
form

U � αB � 1V

� αHV

� αgV � α
�

S gY �
�

Qss Qsy

QT
sy Qyy � �

ST

gY T � V

where the matrices Qss, Qys and Qyy are stored as small MultiVector objects. A multi-vector
solve using the inverse H � B � 1 might be used, for instance, in an active-set optimization algorithm
where V represents the p gradient vectors of the active constraints. This is an important operation
in the formation of a Schur complement of the KKT system in the QP subproblem of an reduced-
space SQP method [5]. This multi-vector operation using H can be performed with the following
operations

T1 � STV

T2 � Y TV

T3 � QssT1 � gQsyT2

T4 � QT
syT1 � gQyyT2

U � αgV � αST3 � αgYT4

where T1, T2, T3 and T4 are all temporary MultiVector objects of dimension m � p. The fol-
lowing function shows how the above operations are performed in order to implement the overall
multi-vector solve.

template<class Scalar>
void TSFCore::LBFGS_solve(

int m, Scalar g, const MultiVector<Scalar>& S_store, const MultiVector<Scalar>& Y_store
,const MultiVector<Scalar>& Q_ss, const MultiVector<Scalar>& Q_sy, const MultiVector<Scalar>& Q_yy
,const MultiVector<Scalar>& V, MultiVector<Scalar>* U, Scalar alpha = 1.0, Scalar = beta = 0.0
)

{
// validate input
...
const int p = V.domain()->dim(); // Get number of columns in V and U
Teuchos::RefCountPtr<const MultiVector<Scalar> >

S = get_updated(S_store,m), // Get view of only stored columns in S_store
Y = get_updated(Y_store,m); // Get view of only stored columns in Y_store

Teuchos::RefCountPtr<MultiVector<Scalar> >
T_1 = S->domain()->createMembers(p), // Create the tempoarary multi-vectors

35

T_2 = Y->domain()->createMembers(p), // ...
T_3 = Q_ss->range()->createMembers(p), // ...
T_4 = Q_yy->range()->createMembers(p); // ...

S->apply(TRANS,V,T_1->get()); // T_1 = S’*V
Y->apply(TRANS,V,T_2->get()); // T_2 = Y’*V
Q_ss.apply(NOTRANS,*T_1,T_3->get()); // T_3 = Q_ss*T_1
Q_sy.apply(NOTRANS,*T_2,T_3->get(),g,1.0); // T_3 += g*Q_sy*T_2
Q_sy.apply(TRANS, *T_1,T_4->get()); // T_4 = Q_sy’*T_1
Q_yy.apply(NOTRANS,*T_2,T_4->get(),g,1.0); // T_4 += g*Q_yy*T_2
S->apply(NOTRANS,*T_3,U,alpha); // U = alpha*S*T_3
Y->apply(NOTRANS,*T_4,U,alpha*g,1.0); // U += alpha*g*Y*T_4
axpy(alpha*g,V,U); // U += alpha*g*V

}

Consider the use of the above function in an SPMD environment where the ANA runs in du-
plicate and in parallel on each processor. Here, the elements for the multi-vector objects S store,
Y store, V and U are distributed across many different processors. Note that in this case all of the
elements in the multi-vector objects Q ss, Q sy, Q yy, T 1, T 2, T 3 and T 4 are stored locally and
in duplicate on each processor. Now let us consider the performance of this set of operations in this
context. Note that there are principally three different types of operations with multi-vectors that
are performed through the MultiVector::apply(...) method.

The first type of operation performed by MultiVector::apply(...) is the parallel/parallel
matrix-matrix products performed in the lines

S->apply(TRANS,V,T_1->get());
Y->apply(TRANS,V,T_2->get());

where the results are stored in the local multi-vectors T 1 and T 2. These two operations only
require a single global reduction each, independent of the number of updates m represented in S and
Y or columns p in V . Note that if there was no concept of a multi-vector and these matrix-matrix
products had to be performed one set of vectors at a time, then these two parallel matrix-matrix
products would require a whopping 2mp global reductions. For m � 40 and p � 20 this would
result in 2mp � 2

�
40 � � 20 � � 1600 global reductions! Clearly this many global reductions would

destroy the parallel scalability of the overall ANA. It is in this type of operation that the concept of
a MultiVector is most critical for near-optimal performance in parallel programs. In addition
to mimimizing communication overhead, the MultiVector implementation can utilize level-3
BLAS to perform the local processor matrix-matrix multiplications yielding near-optimal cache
performance on most systems.

The second type of operation performed by MultiVector::apply(...) is the local/local
matrix-matrix products of small local MultiVector objects in the lines

Q_ss.apply(NOTRANS,*T_1,T_3->get());
Q_sy.apply(NOTRANS,*T_2,T_3->get(),g,1.0);
Q_sy.apply(TRANS, *T_1,T_4->get());
Q_yy.apply(NOTRANS,*T_2,T_4->get(),g,1.0);

36

Note that these types of local computations classify as serial overhead and therefore it is critical that
the cost of these operations be kept to a minimum or they could cripple the parallel scalability of
the overall ANA. Each of these four matrix-matrix multiplications involve only one virtual function
call and the matrix-matrix multiplication itself can be performed with level-3 BLAS, achieving the
fastest possible flop rate attainable on most processors [18].

The third type of operation performed by MultiVector::apply(...) is local/parallel
matrix-matrix multiplications performed in the lines

S->apply(NOTRANS,*T_3,U,alpha);
Y->apply(NOTRANS,*T_4,U,alpha*g,1.0);

This type of operation involves fully scalable work with no communication or synchronization
required. Here, a vector-by-vector implementation will not be a bottleneck from a standpoint of
global communication. However, this operation will utilize level-3 BLAS and yield near-optimal
local cache performance where a vector-by-vector implementation would not.

The last type of operation performed in the above LBFGS solve(...) function does not involve
MultiVector::apply(...) and is shown in the line

axpy(alpha*g,V,U);

The implementation of this function uses an RTOp transformation operator with the Multi-
Vector::applyOp(...) method. Note that this function only involves transformation op-
erations (i.e. no communication) which are fully scalable.

5.5.6 Aliasing of Vector and MultiVector arguments

It has not been stated specifically yet but in all Vector, MultiVector and LinearOpmethods
where a Vector or MultiVector object may be modified, it is strictly forbidden for any of the
mutable objects to alias any of the other objects of the same type in the same method. For example,
code like the following is strictly forbidden.

template<class Scalar>
void foo3(const LinearOp& M, ETransp M_trans, Vector<Scalar>* x)
{

M.apply(M_trans,*x,x); // Error!!!!!!!!!!
}

Note that typically the above function would not even get to the numerics (where it would most
likely compute the wrong results) because M.range()->isCompatible(*M.domain())==false
in general. Instead, this operation must be implemented as follows.

37

template<class Scalar>
void foo4(const LinearOp& M, ETransp M_trans, Vector<Scalar>* x)
{

Teuchos::RefCountPtr<Vector<Scalar> > x_tmp = x->clone(); // Create a copy
M.apply(M_trans,*x_tmp,x); // Okay!

}

Allowing client code to pass in aliased arguments would greatly complicate the implementation
of most RTOp, MultiVector and LinearOp subclasses and would introduce the possibility
of many different types of bugs that would be extremely difficult to track down. This is an issue
that is usually not well defined in most linear algebra interfaces but it is a very important issue.
Allowing ANA developers to alias objects in these methods does not provide any new functionality
and is considered to be only nonessential but convenient functionality and is therefore not included
in TSFCore. In general, it is not possible to determine, from the abstract interfaces for the objects
themselves, if objects alias each other. To perform this type of test would require special methods be
added to the Vector and MultiVector interfaces and implementing these test methods would
complicate the development of these types of subclasses greatly.

Note that aliasing of input data with output data is not strictly forbidden, and is allowd as long
as this is built into the operation. For example, in the LinearOp::apply(...) method, the
vector y both supplies data for the operation (if β �� 0) and stores the output for the operation as
shown in (1). The same applies to several of the RTOp-based vector operations shown in Figure
4 (i.e. Vp S(...), Vt S(...), Vp S(...), Vp StV(...) and ele wise prod(...)). Allowing
vectors and multi-vectors to both supply data for an operation and store output from an operation is
fine as long as the operation has been specifically designed to handle this as the above mentioned
operations have.

In summary, do not alias output arguments with each other or with other input arguments in any
of the TSFCore interface methods.

6 An Example Abstract Numerical Algorithm : An Iterative Linear
Solver

In this section we describe how TSFCore can be directly used to build ANAs and while this is not
the primary role TSFCore is designed for, this example shows that TSFCore provides all of the
needed functionality for near-optimaly performing implementations. Code for a partial ANA in the
form of a compact LBFGS method was described in Section 5.1. In this section, we will describe
the implementation of a simple block BiCG [4] method. BiCG was chosen for this example was
because it requires adjoints and is fairly simple. Other types of block iterative linear solvers such as
methods as CG, BiCGStab, GMRES and QMR [4] can be implemented in a similar manner.

The subclass BiCGSolver implements a simple block BiCG method. A listing for a single-
vector version of the BiCG method is shown in Figure 5. This listing is identical to the listing in [4]

38

except for the substitutions A � op
�
M � , M � op

�
M̃ � and b � ay (where a is a scalar multiplier). The

multi-vector version, as implemented using TSFCore in code, follows in a straightforward manner.
This implementation does not take advantage of any potential linear dependence in the right-hand-
side vectors in an attempt to accelerate the method such as is described in [???]. Such an enhanced
multi-vector version could be implemented in a similar manner.

Figure 6 shows a partial listing for the BiCGSolver::doIteration(...) method (which im-
plements a single iteration of the BiCG method) as implemented in the file TSFCoreSolvers-
BiCGSolver.hpp. All of the functions and methods called in the C++ code shown in Figure 6
have already been described except for the non-member functions assign(...) (lines 292, 293,
310 and 311) and update(...) (lines 315, 316 and 340–342) which are defined in the header
TSFCoreMultiVectorStdOps.hpp. There are two assignment functions assign(...): one that
assigns a MultiVector object to a Scalar, and another that assigns one MultiVector object
to another. Both of these methods are implemented through MultiVector::applyOp(...)
and use already-defined RTOp operators. The two versions of the update(...) method used in
this code, however, can not use MultiVector::applyOp(...) and instead are implemented
column-by-column as, for instance

�
α � j � β � U � : � j � � V � : � j � � V � : � j � � for j � 1 ����� m

in the function

template<class Scalar>
void TSFCore::update(Scalar alpha[], Scalar beta, const MultiVector<Scalar>& U, MultiVector<Scalar>* V)
{

...
const int m = U.domain()->dim();
for(int j = 1; j <= m; ++j)

Vp_StV(V->col(j).get(), alpha[j-1]*beta, *U.col(j));
}

where the Vp StV(...) function is the axpy operation for vectors and is declared in the header
TSFCoreVectorStdOpsDecl.hpp. Note that when running the above BiCG method in an SPMD
configuration (where the ANA runs in parallel and in duplicate in each process) this implementation
of update(...) does not involve any communication or require any synchronization and therefore
will not affect the performance of the algorithm for a communication point of view. However, when
running in a master-slave configuration (where the ANA runs on the master and the linear algebra
runs in the Np slave process) every method invocation of a method on a nonlocal TSFCore object
involves communication, including each call to MultiVector::col(j). While the number
of method invocations on TSFCore objects for all of the other operations shown in Figure 6 are
independent of the number of right-hand-sides m, this is not true for the above implementation of
the update(...) function. However, from a local cache performance point of view, note that this
is a level-1 BLAS operation so there is no real performance motivation for providing a multi-vector
version.

39

Compute r
� 0 � � ay � op

�
M � x � 0 � for the initial guess x

� 0 � .
Choose r̃

� 0 � (for example, r̃
� 0 � � randomize

� � 1 � � 1 �).
for i � 1 � 2 � �����

solve op
�
M̃ � z � i � 1 � � r

� i � 1 �

solve op
�
M̃ � T z̃

� i � 1 � � r̃
� i � 1 �

ρi � 1 � z
� i � 1 � T

r̃
� i � 1 �

if ρi � 1 � 0, method fails

if i � 1

p
� i � � z

� i � 1 �

p̃
� i � � z̃

� i � 1 �

else

βi � 1 � ρi � 1 � ρi � 2

p
� i � � z

� i � 1 � � βi � 1 p
� i � 1 �

p̃
� i � � z̃

� i � 1 � � βi � 1 p̃
� i � 1 �

endif

q
� i � � op

�
M � p � i �

q̃
� i � � op

�
M � T p̃

� i �

γi � p̃
� i � T

q
� i �

αi � ρi � 1 � γi

x
� i � � x

� i � 1 � � αi � 1 p
� i �

r
� i � � r

� i � 1 � � αi � 1q
� i �

r̃
� i � � r̃

� i � 1 � � αi � 1q̃
� i �

check convergence; continue if necessary

end

Figure 5. A single-vector version of the preconditioned bi-conjugate
gradient method (BiCG).

40

00273 template<class Scalar>

00274 void BiCGSolver<Scalar>::doIteration(

00275 const LinearOp<Scalar> &M, ETransp opM_notrans, ETransp opM_trans, MultiVector<Scalar> *X, Scalar a

00276 ,const LinearOp<Scalar> *M_tilde_inv, ETransp opM_tilde_inv_notrans, ETransp opM_tilde_inv_trans

00277) const

00278 {

00285 const Index m = currNumSystems_;

00286 int j;

00287 if(M_tilde_inv) {

00288 M_tilde_inv->apply(opM_tilde_inv_notrans, *R_, Z_.get());

00289 M_tilde_inv->apply(opM_tilde_inv_trans, *R_tilde_, Z_tilde_.get());

00290 }

00291 else {

00292 assign(Z_.get(), *R_);

00293 assign(Z_tilde_.get(), *R_tilde_);

00294 }

00299 dot(*Z_, *R_tilde_, &rho_[0]);

00303 for(j=0;j<m;++j) {

00304 TEST_FOR_EXCEPTION(

00305 rho_[j] == 0.0, Exceptions::SolverBreakdown

00306 ,"BiCGSolver<Scalar>::solve(...): Error, rho["<<j<<"] = 0.0, the method has failed!"

00307);

00308 }

00309 if(currIteration_ == 1) {

00310 assign(P_.get(), *Z_);

00311 assign(P_tilde_.get(), *Z_tilde_);

00312 }

00313 else {

00314 for(j=0;j<m;++j) beta_[j] = rho_[j]/rho_old_[j];

00315 update(*Z_, &beta_[0], 1.0, P_.get());

00316 update(*Z_tilde_, &beta_[0], 1.0, P_tilde_.get());

00317 }

00322 M.apply(opM_notrans, *P_, Q_.get());

00323 M.apply(opM_trans, *P_tilde_, Q_tilde_.get());

00328 dot(*P_tilde_, *Q_, &gamma_[0]);

00329 for(j=0;j<m;++j) alpha_[j] = rho_[j]/gamma_[j];

00334 for(j=0;j<m;++j) {

00335 TEST_FOR_EXCEPTION(

00336 alpha_[j] == 0.0 || RTOp_is_nan_inf(alpha_[j]), Exceptions::SolverBreakdown

00337 ,"BiCGSolver<Scalar>::solve(...): Error, rho["<<j<<"] = 0.0, the method has failed!"

00338);

00339 }

00340 update(&alpha_[0], +1.0, *P_, X);

00341 update(&alpha_[0], -1.0, *Q_, R_.get());

00342 update(&alpha_[0], -1.0, *Q_tilde_, R_tilde_.get());

00348 }

Figure 6. Implementation of an iteration of a multi-vector version of

BiCG.

41

The reason that this operation is performed column-by-column is that it is not well supported
by the methods MultiVector::applyOp(...) or MultiVector::apply(...). The
problem is that in the current design of RTOp and MultiVector::applyOp(...), an RTOp
operator object does not have any way to distinguish between different columns of a multi-vector in
order to apply different values of α � j � for each column j. To allow this would require changing the
design of RTOp to deal with multi-vectors directly instead of just individual vectors.

This operation could be implemented with the MultiVector::apply(...) method using
a MultiVector object

A �

����
�

α � 1 � β
α � 2 � β

. . .
α � m � β

�����
�

and then performing

UA � V � V �
But, since it would generally be assumed that the local multi-vector A is dense, this would likely
cost O

�
nm2 � flops instead of the O

�
nm � flops of the actual update operation (where n is the global

number of unknowns in each linear system).

To yield a near-optimal implementation in all computing environments, this type of update
operation would have to be added directly to the MultiVector interface. However, it is not clear
that this is justified since iterative linear solvers such as this BiCG method are likely to only run in
SPMD mode.

With that said, assuming that the BiCG method shown if Figure 6 is run in SPMD mode, the en-
tire algorithm only involves three global reductions per BiCG iteration – independent of the number
of linear systems m that are being solved. These three global reductions include the two multi-vector
dot products on lines 299 and 328 along with a multi-vector norm calculation for the convergence
check which is performed in a calling function. The two preconditioner solves on lines 288–289
and the two multi-vector operator applications in lines 322–323 likely involve global communica-
tion also, so in general there will be a total of seven parallel synchronizations per BiCG iteration (or
only five is no preconditioner is used) — independent of the number of linear systems being solved.
Therefore, this implementation allows for near-optimal performance both in terms of minimizing
the number of global synchronizations and in local cache performance (because of the use of block
operations with multi-vectors).

7 General Object-Oriented Software Design Concepts and Principles

In this section we discuss some of the basic C++ idioms and design patterns that have been used
to construct the TSFCore C++ classes. The primary issues relate to modern approaches to gen-

42

eral memory management for object-oriented programming in C++ and to object allocation verses
initialization. There is also a short discussion of proper object-oriented design principles.

The basic design patterns used for memory management in TSFCore are the “abstract factory”
and the “prototype” patterns as described in the well known “gang-of-four” book [22]. When com-
bined with the C++ idiom of smart reference-counted pointers for automatic garbage collection (see
[37, Items 28-29]) these design patterns become very powerful and greatly help C++ developers to
dodge many of the pitfalls of dynamic memory allocation in C++. The basic memory management
infrastructure is defined in a namespace called Teuchos which is external to TSFCore. By far the
most important class in Teuchos (see [6]) is the templated smart reference-counted pointer class
RefCountPtr<>. This templated class is very close to the templated class shared ptr<> that is
provided in the boost library [13]. The use of the class RefCountPtr<> is described very well in
the Doxygen documentation so it will not be described here. However, example C++ code that uses
this class was shown in the above sections.

All memory management issues associated with abstract objects, which include instantiations of
all of the classes shown in Figure 2, are handled using RefCountPtr<>. In this way, a client never
needs to explicitly delete any of these objects. An object will be automatically deleted once all of
the RefCountPtr<> objects that point to the object go out of scope. The methods VectorSpace-
::createMember() and VectorSpace::createMembers(...), as well as may others
that (may) have to allocate new objects, all return pointers to these objects embedded in RefCountPtr<>
objects. Note that there are many types of C++ client code, such as functions and methods, that sim-
ply collaborate with preallocated objects for a short period of time and do not need to assume any
responsibilities for memory management. In these cases, the reference or raw pointer to the under-
lying object can be extracted from the RefCountPtr<> object which is then passed on to C++ code
that accepts only references or raw pointers. There are several examples of this type of usage in the
code examples in the previous sections.

The “abstract factory” design pattern (as implemented by VectorSpace for instance) enabled
with RefCountPtr<> effectively relieves clients from having to deal with how objects are created
and destroyed but there is another type of memory management task that is also required in some use
cases. To describe the problem, suppose that a C++ client has a handle to a LinearOp object (either
through a smart or raw pointer) and that client wants to copy the object so that some other client will
not modify the object before said client is finished with the current LinearOp object. This is a
classical problem with the use of objects with reference (or pointer) semantics which does not occur
with objects that use value semantics [45]. This use case requires the ability to “clone” an object
which is the basis of the “prototype” design pattern. Every abstract interface shown in Figure 2
defines some type of clone()method which return RefCountPtr<> objects pointing to the cloned
(or copied) object. In some cases the concrete subclass does not have to override the clone()
method in order achieve this functionality (i.e. Vector and MultiVector) while in other cases
it does (i.e. LinearOp). In cases where a meaningful default implementation for the clone()
method can not be provided, a default implementation returning a null RefCountPtr<> object is
provided. The implication of this approach is that while the clone() method is a useful feature,

43

it is considered an optional feature where subclasses are not required to provide an implementation.
However, every good subclass implementation should provide an implementation of the clone()
method since it makes the work of the client much easier in some use cases.

Another set of issues that are related to the memory management issues described above are
issues concerning object allocation verses object initialization. Scott Myers [37] and others advocate
the “object initialization on construction” style of developing subclasses on the basis that is makes
the subclasses easier to write. However, this approach is not optimal for the reusability of a subclass
in different use cases from the ones for which the subclass was originally designed. To maximize
ease of use by clients and maximize reusability, another style of developing subclasses “independent
object allocation and initialization” is to be preferred. This latter style of developing subclasses is
the approach that is adopted by all of the TSFCore concrete subclasses. To support this, every
concrete subclass has a default constructor (which constructs to an uninitialized state) and a set
of initialize(...) functions that are used to actually initialize the object. In order to also
support the “object initialization on construction” style (which is useful in many different cases)
there are also a corresponding set of constructors that call these initialize(...) methods using
the same arguments. For an example of this style, see the concrete subclass MultiVectorCols in
the Doxygen documentation.

Error handling in TSFCore uses built-in exception handling in C++. All exceptions thrown
by TSFCore code are derived from std::exception. Exceptions are thrown using the macro
TEST FOR EXCEPTION(...) which results in the std::exception::what() method containing
an error message with the file name and line number from where the exception was thrown. This
type of information is very helpful in debugging. In many cases, armed with just this information
and a good programmer-developed error message, a bug can be found, diagnosed and fixed without
even needing to run a debugger. The use of the macro TEST FOR EXCEPTION(...) was shown in
several of the above example code snippets.

Finally, a few comments on proper object-oriented design are in order. It is generally accepted
that object-oriented interfaces should be minimal and every method in an interface should be im-
plementable by every concrete implementation [45, Section 24.4.3]. However, there are some cases
where the goals of simplicity and strict conformance to this principle of ideal object-oriented design
are at odds. Finding the proper balance of simplicity and strict object-oriented correctness requires
knowledge, experience and taste. In all but one case, the TSFCore interfaces strictly conform to this
ideal principle of object-oriented design. The one exception is the support of transposed (adjoint)
operations. If an operation may not be supportable by an implementation then the interface should
provide a way for the client to discern this without having to actually invoke the operation. This
is related to another principle of proper object-oriented design that absolutely every interface and
method in TSFCore adheres to and this is the principle that every method should have its precondi-
tions (see [21] for a decision of pre- and postconditions) clearly stated and the client should be able
to check the preconditions before the method is called. Failure to use this principle makes the use
of such software very difficult and results in a lot of unexpected runtime errors. If an operation can
not be performed by an object because of the violation of a precondition, then a good way to han-

44

dle this is for the method to throw an exception. However, proper object-oriented design does not
require this since it is the responsibility of the client to ensure that preconditions are satisfied (see
[21]). In practice, however, defensive programming practices (see [45]) dictate that clients should
be considered to be unreliable and therefore all preconditions should be checked by every major
method implementation (at least in a debug build) and if a precondition is found to be violated then
an exception should be thrown which contain a detailed error message that describes the problem
(i.e. as returned from std::exception::what()). If the preconditions are met before the method
is called and the method can not satisfy the postconditions for some reason then the method should
throw an exception in general. This latter type of exception is the primary reason that exception
handling was added to the C++ standard in the first place [44].

Another desirable principle of object-oriented design is that an interface should provide decla-
rations for all important methods for which if specialized implementations for all of these methods
were provided, then the resulting overall software implementation would be near-optimal with re-
spect to storage and runtime efficiency. Again, knowledge, experience and taste are required in the
selection of the appropriate set of methods. However, there is conflict between the goals of declar-
ing many methods for the sake of near-optimal performance and the desire to keep the number of
methods to a minimum to ease subclass development. The approach that each TSFCore interface
takes to this issue is that the (nearly) full set of methods needed for a near-optimal implementation
are declared in the interface but reasonable (suboptimal) default implementations are provided for
as many of the methods as possible. Examples of the application of this principle are mentioned
for every major TSFCore interface (for example, the default implementation of the MultiVector
version of the method LinearOp::apply(...) which is based on the Vector version).

8 Nonessential but Convenient Functionality Missing in TSFCore

While TSFCore provides all of the functionality required to be directly used in ANA development
it lacks much nonessential but convenient functionality that is very helpful in developing ANA
code. This nonessential but convenient functionality can be built on top of the core functionality
which is precisely the type of extra functionality that TSF and AbstractLinAlgPack provide. In this
section, several different examples of nonessential but convenient functionality are given along with
references to where this functionality exists in TSF and AbstractLinAlgPack.

8.1 Sub-vector views as Vector objects

In Section 5.3.1, the use case where the sub-vectors of a Vector object are treated as logical
vector was discussed. The example in that section got the job done but a better approach to pro-
viding access to sub-vectors is to create a sub-view decorator subclass (see the “decorator” pattern
in [22]) that allows the creation of a Vector view object of a contiguous range of elements in an-
other Vector object. Such a subclass is included in AbstractLinAlgPack (see VectorSubView and

45

VectorMutableSubView) and is very useful for high-level ANA code. These “sub-view” subclasses
can be easily implemented through the Vector::applyOp(...) method.

8.2 Composition of Vector and LinearOp objects

The ideal way to represent composite blocked or product vector objects, such as described in Sec-
tion 5.3.1, is to create a composite blocked or product vector subclass such as TSF::TSFProduct-
Vector in TSF or AbstractLinAlgPack::VectorBlocked in AbstractLinAlgPack. Associated
with these product (or blocked) vector subclasses are product vector spaces subclasses. These sub-
classes are called TSF::TSFProductSpace in TSF and AbstractLinAlgPack::VectorSpace-
Blocked in AbstractLinAlgPack. These types of composite product Vector and VectorSpace
subclasses are easy to develop because of the specification of Vector::applyOp(...).

Note that a product vector such as

x̃ �

����
�

x1

x2
...

xN

�����
�

with N block vectors is distictly different from a multi-vector

Y � �
y1 y2 ����� yN �

with N colunns. In the multi-vector Y , each of the column vectors y j lie in the same vector space
(i.e. the range space of the linear operator represented by the multi-vector) which may not be the
case for the vector blocks x j of x̃ which may lie in distictly different vector spaces X j. While it may
seem that the mathematical differences between a multi-vector and a product vector are subtle, they
are distictly different from a software implication point of view. Multi-vectors are ment to represent
tall, thin dense matrices such as for multiple right-hand-sides that are passed to a linear solver or
for performing mulitple linear operator applications (with the same linear operator) while product
vectors and product vector spaces are ment to represent single vector objects which are composed
of individual vector blocks such as would be used for the composite unknowns in an SFE method
or a multi-period design problem. For example, a product vector space would be able to create a
product multi-vector such as

Ỹ �

����
�

Y1

Y2
...

YN

�����
�

where each constituent multi-vector Y j may have a different range space but all must have the same
domain space obviously. For an example of a product (or blocked) multi-vector, see AbstractLin-
AlgPack::MultiVectorMutableBlocked.

46

Similar generic composition subclasses also exist for linear operators in TSF (see TSF::TSF-
BlockLinearOperator and TSF::TSFSumOperator) and AbstractLinAlgPack (see AbstractLin-
AlgPack::MatrixOpBlocked and AbstractLinAlgPack::MatrixOpComposite). In addition,
more application-specific composite LinearOp subclasses can also be developed (for example,
for the SFE system in [40]).

8.3 Matlab-like notation and handle classes for linear algebra using operator over-
loading

TSFCore contains abstractions for linear algebra objects. Mathematicians use a precise syntax to
describe linear algebra operations. Matlab [36] has established a useful convention for mathematical
linear algebra syntax using only ASCII characters. C++ has operator overloading. When you put
all of this together it seems obvious, at first glance, that operator overloading in C++ should be used
to specify linear algebra operations like

y � Au � γBT v � ηCw

in C++ as

y = A*u + gamma*trans(B)*v + eta*w;

However, providing a near-optimal implementation (i.e. no unnecessary temporaries or multiple
memory accesses) of operator overloading for linear algebra in C++ is nontrivial. While this type of
syntax is desirable, it does not provide any new functionality and is only nonessential but convenient
functionality and is therefore not included in TSFCore. An efficient operator overloading mecha-
nism in C++ is hard to implement and is difficult for C++ novices to debug through. If operator
overloading is to be built on top of TSFCore (e.g. using TSF for instance) then this implementation
must be bullet proof and provide unmatched exception handling so that users must never need to
debug through this code. TSF has started to implement linear algebra operations using operator
overloading but at the present time only vector-vector operations are supported.

Closely associated with operator overloading is the concept of handle classes [17]. Handles
assume the same type of role as a smart pointers except all of the method forwarding (which is per-
formed automatically with the operator function RefCountPtr<>::operator->()) must be per-
formed manually in handle class (which must be written an maintained for every method on every
class by some developer). Handles make the implementation of linear algebra operations with op-
erator overloading much easier. Handles are used extensively in TSF. Since TSFCore does not
implement operator overloading, handles classify as nonessential but convenient functionality and
are therefore not included in TSFCore.

47

9 Making the most of TSFCore : Adapters

To leverage TSFCore to its fullest benefit, TSFCore should be used as the standard basic set of
linear algebra abstractions that form the basis of every ANA/LAL and ANA/APP interface. In ad-
dition, every set of compatible linear algebra interfaces like TSF, HCL and AbstractLinAlgPack
should provide adapters to and from TSFCore. For example, there already exist adapter sub-
classes that implement the AbstractLinAlgPack interfaces using TSFCore objects (i.e. TSFCore-
to-AbstractLinAlgPack). There are also adapter subclasses that implement the TSFCore interfaces
using AbstractLinAlgPack objects (i.e. AbstractLinAlgPack-to-TSFCore). TSF is built on top of
TSFCore so there is no need for TSFCore/TSF adapters. If these same set of adapters are also
developed for HCL, and other similar interfaces, then scenarios such as the following are possible.

Consider an advanced transient PDE-constrained optimization problem where the basic PDE
constraints are modeled and discretized (in space) using Sundance [34]. Sundance uses TSF for all
of its linear algebra needs. If the adapters from TSFCore-to-HCL are available, then the adjoint-
sensitivity time integrator described in [24] could be used to compute transient adjoint-sensitivities
for objective and auxiliary constraint functions. Then, with HCL-to-TSFCore and TSFCore-to-
AbstractLinAlgPack adapters available, these adjoint sensitivities to could be used in an optimiza-
tion algorithm in MOOCHO. In turn, MOOCHO may solve for Newton steps with the Hessian
(using a LBFGS matrix as described in Section 5.1, implemented using AbstractLinAlgPack, as a
preconditioner) using an iterative conjugate gradient method as implemented using TSF as provided
in Trilinos. This would be easy if adapters for AbstractLinAlgPack-to-TSFCore were implemented.
Without going into any more detail about the above optimization scenario, it should be clear how
the adoption of TSFCore as a standard basic minimal set of linear algebra interfaces would make
such advanced examples of reuse possible.

10 Summary

TSFCore provides the intersection of all of the functionality required by a variety of abstract nu-
merical algorithms ranging from iterative linear solvers all the way up to optimizers. By adapting
TSFCore as a standard interface layer, interoperability between applications, linear algebra libraries
and abstract numerical algorithms can become a reality. An extension of the basic TSFCore inter-
faces for nonlinear problems is described in [8].

48

References

[1] David Abrahams. Generic programming techniques.

[2] E. Anderson et al. LAPACK User’s Guide. SIAM, 1995.

[3] S. Balay, W. D. Gropp, L.C. McInnes, and B.F. Smith. PETSc 2.0.
http://www.mcs.anl.gov/petsc.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[5] R. A. Bartlett. Object Oriented Approaches to Large Scale NonLinear Programming For Pro-
cess Systems Engineering. Ph.D Thesis, Chemical Engineering Department, Carnegi Mellon
University, Pittsburgh, 2001.

[6] R. A. Bartlett. An Introduction to Algorithm Development in MOOCHO. Sandia National
Labs, 2003.

[7] R. A. Bartlett. MOOCHO : Multifunctional Object-Oriented arCHitecture for Optimization,
User’s Guide. Sandia National Labs, 2003.

[8] R. A. Bartlett. TSFCore::Nonlin : An extension of TSFCore for the development of nonlin-
ear abstract numerical algorithms and interfacing to nonlinear applications. Technical report
SAND03-xxxx, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Liver-
more, California 94550, 2003.

[9] R. A. Bartlett, B. G. van Bloeman Waanders, and M. A. Heroux. Vector reduc-
tion/transformation operators for linear algebra interfaces to efficiently develop complex ab-
stract numerical algorithms independently of data mapping, 2003. Submitted to ACM TOMS.

[10] Steve Benson, Lois Curfman McInnes, and Jorge Moré. TAO : Toolkit for advanced optimiza-
tion (web page).

[11] L. S. Blackford, J. Choi, A. Cleary, E.D. ’Azevedo, J. Demmel, I. Dhilon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walder, and R.C. Whaley. ScalLAPACK User’s
Guide. SIAM, Philadelphia, PA, 1997.

[12] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[13] BOOST. The BOOST library. http://www.boost.org.

[14] R. H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-newton matrices and
their use in limited methods. Math. Prog., 63:129–156, 1994.

49

[15] George D. Byrne and Allan C. Hindmarsh. PVODE, an ODE solver for parallel computers.
Int. J. High Perf. Comput. Applic, 13:354–365, 1999.

[16] Robert L. Clay, Kyran D. Mish, Ivan J. Otero, Lee M. Taylor, and Alan B. Williams. An
annotated reference guide to the finite-element interface (FEI) specification : Version 1.0.
Technical Report SAND99-8229, Sandia National Laboratories, 1999.

[17] J. O. Coplien. Advanced C++. Addison-Wesley, 1992.

[18] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[19] H. C. Edwards. SIERRA framework version 3: Core services theory and design. Technical
report SAND2002-3616, Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, 2002.

[20] The MPI Fourum. MPI: A Message Passing Interface Standard. University of Tennessee,
1995. http://www.mpi-fourum.org/docs/docs.html.

[21] M. Fowler and K. Scott. UML Distilled, second edition. Addison-Wesley, 2000.

[22] E. Gamma et al. Design Patterns: Elements fo Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[23] M. S. Gockenbach, M. J. Petro, and W. W. Symes. C++ classes for for linking optimization
with complex simulations. ACM Transactions on Mathematical Software, 1999.

[24] Mark S. Gockenbach, Daniel R. Reynolds, Peng Shen, and William W. Symes. Efficient and
automatic implementation of the adjoint state method. ACM Transactions on Mathematical
Software, 28(1):22–44, March 2002.

[25] M. Heinkenschloss and L. N. Vicente. An interface between optimization and application
for the numerical solution of optimal control problems. ACM Transactions on Mathematical
Software, 25(2):157–190, June 1999.

[26] M. A. Heroux. Epetra : Concrete C++ linear algebra classes for parallel linear algebra.
http://software.sandia.gov/Trilinos.

[27] Mike A. Heroux, Teri Barth, David Day, Rob Hoekstra, Rich Lehoucq, Kevin Long, Roger
Pawlowski, Ray Tuminaro, and Alan Williams. Trilinos : object-oriented, high-performance
parallel solver libraries for the solution of large-scale complex multi-physics engineering and
scientific applications. http://software.sandia.gov/Trilinos.

[28] S. A. Hutchinson, , J. N. Shadid, and R. S. Tuminaro. Aztec user’s guide: Version 1.0. Techni-
cal report, Sandia National Laboratories, Albuquerque, New Mexico 87185, 1995. SAND95-
1559.

[29] S. A. Hutchinson, L. V. Prevost, J.N. Shadid, C. Tong, and R.S. Tuminaro. Aztec user’s guide:
Version 2.0. Technical Report ANL-95/11–Revision 2.0.22, Sandia National Laboratories,
1998.

50

[30] T. Kolda and R. Pawlowski. NOX: An object-oriented, nonlinear solver package.
http://software.sandia.gov/Trilinos.

[31] Sandia National Labs. ESI: Equation solver interface. http://z.ca.sandia.gove/esi,
2001.

[32] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[33] K. R. Long and M. A. Heroux. TSF : The trilinos solver framework.
http://software.sandia.gov/Trilinos.

[34] Kevin R. Long. Sundance: a rapid prototyping tool for parallel pde–constrained optimization.
Technical report, Sandia National Laboratories, 2002.

[35] A. Lumsdanie and J. Siek. The matrix template library. http://www.lsc.nd.edu/research/mtl/,
1998.

[36] Mathworks. Matlab c
�

: The language of technical computing. http://www.mathworks.com.

[37] S. Meyers. More Effective C++. Addison-Wesley, 1996.

[38] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 1999.

[39] Department of Energy. ASCI: Advanced simulation and computing initiative.
http://www.sandia.gov/ASCI.

[40] M. F. Pellissetti and R. G. Ghanem. Iterative solution of systems of linear equations arising in
the context of stocastic finite elements. Advances in Engineering Software, 54(189):211–230,
1990.

[41] R. Pozo. TNT: Template numerical toolkit. http://math.nist.gov/tnt.

[42] S. Roberts et al. Meschach++: Matrix computations in c++.
http://www.netlib.org/c/meschach/, 1996.

[43] Roque Wave Software. Math++: Object-oriented library for numeric computation. Technical
Report 96-03, Roque Wave Software, Inc., 1996.

[44] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, New York, 1994.

[45] B. Stroustrup. The C++ Programming Language, special edition. Addison-Wesley, New
York, 1997.

[46] AEA Technology. Harwell Subroutine Library: Release 12. Harwell Laboratory, Oxfordshire,
England, 1995.

51

52

A TSFCore C++ class declarations

namespace TSFCore {

using RangePack::Range1D;
template<class Scalar> class VectorSpaceFactory;
template<class Scalar> class VectorSpace;
template<class Scalar> class Vector;
template<class Scalar> class OpBase;
template<class Scalar> class LinearOp;
template<class Scalar> class MultiVector;

template<class Scalar>
class VectorSpaceFactory {
public:

virtual Teuchos::RefCountPtr< const VectorSpace<Scalar> > createVecSpc(int dim) const = 0;
};

template<class Scalar>
class VectorSpace {
public:

virtual ˜VectorSpace() {}
virtual Index dim() const = 0;
virtual bool isCompatible(const VectorSpace<Scalar>& vecSpc) const = 0;
virtual Teuchos::RefCountPtr< Vector<Scalar> > createMember() const = 0;
virtual bool isInCore() const;
virtual Teuchos::RefCountPtr< const VectorSpaceFactory<Scalar> > smallVecSpcFcty() const;
virtual Teuchos::RefCountPtr< MultiVector<Scalar> > createMembers(int numMembers) const;
virtual Scalar scalarProd(const Vector<Scalar>& x, const Vector<Scalar>& y) const;
virtual void scalarProds(const MultiVector<Scalar>& X, const MultiVector<Scalar>& Y

,Scalar scalar_prods[]) const;
virtual Teuchos::RefCountPtr< const VectorSpace<Scalar> > clone() const;

};

template<class Scalar>
class Vector {
public:

virtual ˜Vector() {}
virtual Teuchos::RefCountPtr< const VectorSpace<Scalar> > space() const = 0;
virtual void applyOp(const RTOpPack::RTOpT<Scalar> &op, const size_t num_vecs

,const Vector<Scalar>* vecs[], const size_t num_targ_vecs ,Vector<Scalar>* targ_vecs[]
,RTOp_ReductTarget reduct_obj ,const Index first_ele ,const Index sub_dim
,const Index global_offset) const = 0;

virtual void getSubVector(const Range1D& rng, RTOpPack::SubVectorT<Scalar>* sub_vec) const;
virtual void freeSubVector(RTOpPack::SubVectorT<Scalar>* sub_vec) const;
virtual void getSubVector(const Range1D& rng, RTOpPack::MutableSubVectorT<Scalar>* sub_vec);
virtual void commitSubVector(RTOpPack::MutableSubVectorT<Scalar>* sub_vec);
virtual void setSubVector(const RTOpPack::SparseSubVectorT<Scalar>& sub_vec);

};

template<class Scalar>
void applyOp(const RTOpPack::RTOpT<Scalar> &op, const size_t num_vecs

,const Vector<Scalar>* vecs[], const size_t num_targ_vecs ,Vector<Scalar>* targ_vecs[]
,RTOp_ReductTarget reduct_obj ,const Index first_ele=1 ,const Index sub_dim=0
,const Index global_offset=0);

template<class Scalar>
class OpBase {
public:

virtual ˜OpBase();

53

virtual Teuchos::RefCountPtr< const VectorSpace<Scalar> > domain() const = 0;
virtual Teuchos::RefCountPtr< const VectorSpace<Scalar> > range() const = 0;
virtual bool opSupported(ETransp M_trans) const;

};

template<class Scalar>
class LinearOp : virtual public OpBase<Scalar> {
public:

virtual void apply(const ETransp M_trans, const Vector<Scalar> &x
,Vector<Scalar> *y ,const Scalar alpha=1.0 ,const Scalar beta=0.0) const = 0;

virtual Teuchos::RefCountPtr<const LinearOp<Scalar> > clone() const;
virtual void apply(const ETransp M_trans ,const MultiVector<Scalar> &X

,MultiVector<Scalar> *Y ,const Scalar alpha=1.0 ,const Scalar beta=0.0) const;
};

template<class Scalar>
class MultiVector : virtual public LinearOp<Scalar> {
public:

virtual Teuchos::RefCountPtr<const Vector<Scalar> > col(Index j) const;
virtual Teuchos::RefCountPtr<Vector<Scalar> > col(Index j) = 0;
virtual Teuchos::RefCountPtr<const MultiVector<Scalar> > clone_mv() const;
virtual Teuchos::RefCountPtr<MultiVector<Scalar> > clone_mv();
virtual Teuchos::RefCountPtr<const MultiVector<Scalar> > subView(const Range1D& col_rng) const;
virtual Teuchos::RefCountPtr<MultiVector<Scalar> > subView(const Range1D& col_rng);
virtual Teuchos::RefCountPtr<const MultiVector<Scalar> > subView(const int numCols

,const int cols[]) const;
virtual Teuchos::RefCountPtr<MultiVector<Scalar> > subView(const int numCols, const int cols[]);
virtual void applyOp(const RTOpPack::RTOpT<Scalar> &primary_op, const size_t num_multi_vecs

,const MultiVector<Scalar>* multi_vecs[], const size_t num_targ_multi_vecs
,MultiVector<Scalar>* targ_multi_vecs[], RTOp_ReductTarget reduct_objs[], const Index primary_first_ele
,const Index primary_sub_dim,const Index primary_global_offset, const Index secondary_first_ele
,const Index secondary_sub_dim) const;

virtual void applyOp(const RTOpPack::RTOpT<Scalar> &primary_op, const RTOpPack::RTOpT<Scalar> &secondary_op
,const size_t num_multi_vecs, const MultiVector<Scalar>* multi_vecs[], const size_t num_targ_multi_vecs
,MultiVector<Scalar>* targ_multi_vecs[], RTOp_ReductTarget reduct_obj, const Index primary_first_ele
,const Index primary_sub_dim, const Index primary_global_offset, const Index secondary_first_ele
,const Index secondary_sub_dim) const;

void apply(const ETransp M_trans, const Vector<Scalar> &x, Vector<Scalar> *y, const Scalar alpha
,const Scalar beta) const;

Teuchos::RefCountPtr<const LinearOp<Scalar> > clone() const;
};

template<class Scalar>
void applyOp(const RTOpPack::RTOpT<Scalar> &primary_op, const size_t num_multi_vecs

,const MultiVector<Scalar>* multi_vecs[], const size_t num_targ_multi_vecs
,MultiVector<Scalar>* targ_multi_vecs[], RTOp_ReductTarget reduct_objs[], const Index primary_first_ele=1
,const Index primary_sub_dim=1, const Index primary_global_offset=0, const Index secondary_first_ele=1
,const Index secondary_sub_dim=0) const;

template<class Scalar>
void applyOp(const RTOpPack::RTOpT<Scalar> &primary_op, const RTOpPack::RTOpT<Scalar> &secondary_op

,const size_t num_multi_vecs, const MultiVector<Scalar>* multi_vecs[], const size_t num_targ_multi_vecs
,MultiVector<Scalar>* targ_multi_vecs[], RTOp_ReductTarget reduct_obj, const Index primary_first_ele=1
,const Index primary_sub_dim=0, const Index primary_global_offset=0, const Index secondary_first_ele=1
,const Index secondary_sub_dim=0) const;

} // namespace TSFCore

54

DISTRIBUTION:

1 Omar Ghattas
Carnegie Mellon University
5000 Forms Ave.
Pittsburgh, PA 15213

1 Larry Biegler
Department Chemeical Engineering
Carnegie Mellon University
5000 Forms Ave.
Pittsburgh, PA 15213

1 Carl Laird
Department Chemeical Engineering
Carnegie Mellon University
5000 Forms Ave.
Pittsburgh, PA 15213

1 Matthias Heinkenschloss
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Bill Symes
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Tony Padula
Department of Computational and Ap-
plied Mathematics
MS 134 Rice University
6100 S. Main Street
Houston, TX 77005-1892

1 Mark Gockenbach
Department of Mathematical Sciences
Michigan Technological University
1400 Townsend Drive
Houghton, Michigan 49931-1295, U.S.A.

1 George Biros
Department of Applied Mechanics and
Mechanical Engineering
University of Pennsylvania
220 Towne Building 220 S. 33rd St.
Philadelphia, PA 19104-6315, USA

1 MS 0847
Bill Camp, 9200

1 MS 0847
Sudip Dosanjh, 9233

1 MS 0847
Scott Mitchell, 9211

1 MS 1110
Roscoe Bartlett, 9211

1 MS 1110
Scott Collis, 9211

1 MS 0847
Bart van Bloemen Waanders,
9211

1 MS 0847
Mike Eldred, 9211

1 MS 0819
Tim Trucano, 9211

1 MS 0847
Tony Giunta, 9211

1 MS 0947
Laura Swiler, 9211

1 MS 9217
Mark Adams, 9214

1 MS 1110
Pavel Bochev, 9214

1 MS 1110
Todd Coffey, 9214

55

1 MS 1110
David Day, 9214

1 MS 1110
John Delaurentis, 9214

1 MS 1110
Michael Heroux, 9214

1 MS 1110
Ulrich Hetmaniuk, 9214

1 MS 9217
Jonathan Hu, 9214

1 MS 1110
Richard Lehoucq, 9214

1 MS 1110
Louis Romero, 9214

1 MS 1110
David Ropp, 9214

1 MS 1110
Heidi Thornquist, 9214

1 MS 9217
Raymond Tuminaro, 9214

1 MS 1110
James Willenbring, 9214

1 MS 1110
David Womble, 9214

1 MS 9217
Steve Thomas, 8962

1 MS 9217
Paul Boggs, 8962

1 MS 9217
Kevin Long, 8962

1 MS 9217
Patricia Hough, 8962

1 MS 9217
Tamara Kolda, 8962

1 MS 9217
Monica Martinez-Canales, 8962

1 MS 9217
Pamela Williams, 8962

1 MS 9217
Victoria Howle, 8962

1 MS 1110
William Hart, 9215

1 MS 0847
Steve Wojtkiewicz, 9124

1 MS 0316
Eric Keiter, 9233

1 MS 0316
Scott Hutchinson, 9233

1 MS 0316
Curt Ober, 9233

1 MS 0316
Tom Smith, 9233

1 MS 9143
Carter Edwards, 0827

1 MS 9143
James Stewart, 0826

1 MS 0819
Ricard Drake, 9231

1 MS 0316
Robert Hoekstra, 9233

1 MS 0316
Roger Pawlowski, 9233

1 MS 1110
Eric Phipps, 9233

1 MS 1110
Andrew Salinger, 9233

56

1 MS 0826
Alan Williams, 8961

1 Kendall Stanley

1 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 9610

2 MS 0612
Review & Approval Desk, 4916

57

